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Abstract

Following the ideas of Élie Cartan (1928), we use Cartan’s equivalence method and the notion
of Cartan’s affine generalized space and development to geometrize non-holonomic mechanics.
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1. Introduction

The purpose of this paper is to give, using modern differential geometrical tools, a detailed
version of the ideas of Élie Cartan, exposed in his address at the 1928 International Congress
of Mathematicians (see[5]), about geometrization of non-holonomic systems.

This important paper seems forgotten in the mathematical literature devoted to non-holo-
nomic systems. To our knowledge, the only exception is due to Jair Koiller and his col-
laborators, in a recent preprint that has appeared during the preparation of this work (see
[12]), in which they also make a tentative to bring at daylight Cartan’s paper. However,
their methods are very different from those we develop here. In fact, they use extensively
the traditional Koszul approach to connection theory, based on covariant derivatives, as is
explained, for example in[18], and they put emphasis in other issues that are not considered
here. In this paper, we have tried instead to follow closely the two key ideas of Cartan’s
approach to geometric structures, namely his equivalence method, or in modern terms the
geometry ofG-structures (see[8,10,19]), which hopefully seems the strongest way to treat
the geometric structure behind non-holonomic systems, and his notion ofgeneralized space,
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here space with affine connection (see[6,7], and for a modern approach, the recent book
[17]). These two key ideas were developed by Cartan along several years, in a lot of papers,
where he has applied them extensively, for example, to relativity theory (see[6]) and to his
program of geometrization of differential equations (see the third volume of hisOeuvres
Complètes).

Given a non-holonomic mechanical systemmwith configuration spaceQ, ann-dimensio-
nal smooth Riemannian manifold, with Riemannian metricg (the kinetic energy), and
non-holonomic constraints given by a completely non-integrable distributionD of dimen-
sion d, the main idea is to associate tom, an intrinsically defined Euclidean (or metric)
connection, in general with torsion, and to use it to develop the spaceQ, along any of its
curves, into a fixed affine spaceDo, for some fixed pointo ∈ Q.

The tentative of associating to a non-holonomic mechanical system a connection, goes
back to Synge, Vancreanu, and more recently, citing just a few, to Vershik and coworkers
[20,21], Bates and Sniatycki[2] and Bloch and Crouch[4]. However, in these papers, the
connections found are in general neither metric nor unique. In fact, often the choice of
connection is based on somewhat ad hoc assumptions which obscures the true geometric
realm of the structure of non-holonomic systems. On the contrary, and this one the main
differences of the approach we develop, the connection founded here is intrinsically as-
sociated to the non-holonomic system, at least for 2-step distributions, and moreover, it
is a metric connection, though in general with torsion. This difference is very explicit in
the example treated inSection 4, the constrained particle, which must be compared with
[2, Example 2; 4, Example 6.2]. In both these works the connection is not metric.

Another subject that we explore is the following—to the non-holonomic systemm (in the
2-step situation), we associate a Cartan (affine) connection to the affine frame bundle ofQ

(in Cartan’s terminology[6,7], a “generalized space”—this is part of Cartan’s generalization
of Klein’s Erlangen program, as is explained in the recent book[17]), which is then used
to developQ, along any of its curves, into a fixed affine spaceDo, for some fixed point
o ∈ Q. This strongly resembles the analogous situation for holonomic systems, when
we roll (eventually with skidding or spinning) ad-dimensional submanifold on another
d-dimensional submanifold (ad-plane, for example) inRn (see the beautiful paper of
Nomizu [14]). However, in general, we have now torsion, whose geometrical meaning is
made clear, in our context, inSection 3and more concretely in the example ofSection
4—take a “small” loop, based ono ∈ Q, and develop it inDo to obtain a curve that starts in
o. In general, this curve does not close, and, to second order, the failure to close is measured
by a vector which is exactly the torsion of the connection ato (seeSection 3for a rigorous
approach).

This paper is organized as follows. InSection 2, we use Cartan’s equivalence method
to geometrize non-holonomic mechanics, by associating to such a system an Euclidean
connection. For a 2-step generating distributionD, we are able to associate intrinsically two
Euclidean connections, in general with torsion, recovering the results of Cartan in[5]. We
also include, for pedagogical reasons and also to make the paper as much self-contained
as possible, a short exposition about Cartan’s equivalence method, following closely Ref.
[19] and the very influential recent book[13], since this method seems poorly used in the
non-holonomic context.Section 3, gives a detailed version of the notion of Cartan’s affine
generalized space and also of the notion of development. This is then used to developQ,
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along any of its curves, into a fixed affine spaceDo, for some fixed pointo ∈ Q. Finally,
in Section 4, we illustrate the previous theory by working out the detailed computations in
the example of a constrained particle inR

3.

2. Cartan geometrization of non-holonomic mechanics

Consider a non-holonomic mechanical systemmwith configuration spaceQ, ann-dimen-
sional smooth Riemannian manifold, with Riemannian metricg (the kinetic energy), a
smooth 1-formF ∈ Ω1(Q) (the force field), and non-holonomic constraints,1 given by
a smooth rankd completely non-integrable vector subbundle ofTQ, i.e., a completely
non-integrable distributionD of dimensiond in Q.

We also assume thatD is bracket generating which, by Chow theorem (see[13]), guar-
antees that the set of all possible positions of our mechanical systemm is all ofQ.

The d’Alembert–Lagrange principle (see[1]) says that the dynamics ofm obeys the
following condition:

[L] − F ∈ D⊥, (2.1)

where [L] is the Lagrange derivative of the LagrangianL = (1/2)g (see[1, p. 12]) andD⊥
is the annihilator ofD in T ∗Q.

Hereafter, we use the following indices conventions:i, j, k, l = 1, . . . , d = dimD;
α, β, γ, λ = d + 1, . . . , n = dimQ anda, b, c = 1, . . . , n.

We denote byV the vector spaceRn of column vectors, with a fixed basis{εa}, and by
V ∗ its dual of row vectors, with the dual basis{εa}, and we also consider the subspaceS of
V , generated by the firstd vectors{εi}i=1,...,d of the basis{εa}. By a 0-adapted coframeθq
for Dq , q ∈ Q, we mean an isomorphismθq : TqQ→ V , which satisfiesθq(Dq) = S and
θ∗q 〈·, ·〉|S = gq |Dq , where〈·, ·〉|S is the usual Euclidean inner product onS ∼= R

d . Moreover,
we denote byG0 the subgroup of GL(V ) consisting on the linear isomorphisms ofV that
fix S, and which, when restricted toS, are orthogonal transformations ofS. In terms of the
basis{εa} = {εi; εα} for V , G0 is the subgroup of GL(n) given by the following block
triangular matrices:[

C B

0 A

]
, (2.2)

whereA andB are arbitrary real matrices (of functions), respectively,(n− d)× (n− d),
d × (n− d), C is an orthogonald × d matrix, and detC detA �= 0.

Consider a (local) 0-adapted coframeθ for D. Putθ = θiεi + θαεα and look atθ as a
column vector of 1-forms onQ:

θ = [θa ] =
[
θi

θα

]
.

Thus (locally)θα annihilatesD andg|D = (θ1)2+· · ·+ (θd)2|D. Of course such a coframe
is not unique—the indeterminacy is measured by the gauge groupG0. Formally, we have

1 We consider only the time independent case, for simplicity.
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aG0-structureπ : B0 = BG0 → Q, whereG0 is the subgroup of GL(n) given by the
above mentioned block triangular matrices. The groupG0 acts on the right ofB0 by the
ruleRg(θ) = θ · g = g−1θ , whereθ = [θa ], andg ∈ G0 ⊂ GL(n).

If we fix a 0-adapted coframeθ = [θa ], defined on an open setU ⊆ Q (i.e., a local
section ofB0 overU ), then we have a trivialization of theG0-bundle overU , given by

τθ : U ×G0 → B0|U , (q, g) �→ g−1θq, (2.3)

that is equivariant in the sense thatτθ (q,gh) = (gh)−1θq = h−1g−1θq = h−1τθ (q, g) =
τθ (q, g) · h.

We now consider the soldering form� (or tautologicalV -valued 1-form), defined on
B0, through the formula

�η(v) = η ◦ π∗(v), v ∈ TηB0, η ∈ B0. (2.4)

Note that in the LHS of(2.4),η is considered as a point ofB0, while in the RHS is considered
as an isomorphismη : Tπ(η)Q→ V , defined byη(v) = [ηa(v)], v ∈ Tπ(η)Q. The soldering
form has the following properties (see[10,13,19]):

• Equivariance: R∗
g� = g−1�.

• Semi-basic: ιX� = 0, for every vertical vector fieldX (tangent to the fibers).
• Reproducing property: if σ : U → B0 is a local section, thenσ ∗� = σ , where on the

RHSσ is viewed as aV -valued form onU .

Using the local trivialization(2.3), it is easy to see that(τ ∗θ �)(q,g) = g−1θq . Let us
denoteτ ∗θ � simply by�. Then we have

�(q,g) =
[

�i
(q,g)

�α
(q,g)

]
=

[
C B

0 A

]−1

 θ

j
q

θ
β
q


 , where g =

[
C B

0 A

]
∈ G0. (2.5)

Following the equivalence method of Cartan (see[10,13,19]), we now choose a connection
form, that is, an equivariantg0-valued 1-formω onB0, whereg0 = Lie(G0) that verifies
the following two properties:

• ω(Xξ ) = ξ ∀ξ ∈ g0, whereXξ is the infinitesimal generator of theG0-right action on
B0.

• R∗
gω = g−1ωg ∀g ∈ G0.

If we putg = exp(tξ), ξ ∈ g0 in the equivariance propertyR∗
g� = g−1�, and differen-

tiate fort = 0, we obtainLXξ
� = −ξ · �, and since�(Xξ ) = 0 we get

d�(Xξ , v)= (ιXξ
d�)(v) = (LXξ

� − dιXξ
�)(v) = −ξ · �(v) = −(ω(Xξ ) · �(v)

−ω(v) · �(Xξ ))
def= − (ω ∧ �)(Xξ , v), (2.6)

which shows that d� + ω ∧ � is aV -valued semi-basic 2-form onB0, and thus can be
written as

d� + ω ∧ � = T, (2.7)
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whereT is aV -valued semi-basic 2-form onB0. This is the so-calledCartan first structure
equation. T = T[ω] is thetorsionof the connectionω, and can be expandedT = Taef�

e ∧
�f ⊗ εa . However, if we put, for eachη ∈ B0, kerωη = Hη we know thatη �→ Hη is
an n-dimensional distribution transversal to the fibers and that�η|Hη : Hη → V is an
isomorphism. Using this isomorphism we can considerT as a function

T : B0 → V ⊗∧2V ∗ ∼= Hom(∧2V, V ), T = Taefεa ⊗ εe ∧ εf , (2.8)

that satisfies the equivariance

T(η · g)(v ∧ w) = g−1T(η)(gv ∧ gw), v,w ∈ V, η ∈ B0, g ∈ G0. (2.9)

Now we study how the torsion varies with the choice of the connection. So, let us assume
that we choose another connection formω̂. Thenω̂ = ω+ϕ, for someg0-valued semi-basic
1-form of adjoint type, i.e.,R∗

gϕ = g−1ϕg andιXϕ = 0∀X vertical. Therefore, we can write
ϕ = ϕa�

a , for g0-valued functionsϕa . Using again the above mentioned isomorphism
�η|Hη : Hη → V , and in terms of a basis{ξ r} for g0 and{εa} for V ∗, we can writeϕ as a
function

ϕ : B0 → g0 ⊗ V ∗ ∼= Hom(V , g0), ϕ = ϕraξ r ⊗ εa (2.10)

for certain functionsϕra onB0. Therefore we see that the spaceg0 ⊗ V ∗ parameterizes the
ambiguity in the choice of the connection 1-form. We also have thatϕ isG-equivariant

ϕ(η · g)(v) = g−1 · ϕ(η)(gv) · g, v ∈ V, η ∈ B0, g ∈ G0. (2.11)

By Cartan first structureequation (2.7), we now have

d� = −ω ∧ � + T = −ω̂ ∧ � + T̂,

whereT̂ is the torsion ofω̂, and so

T̂ − T = (ω̂ − ω) ∧ � = ϕ ∧ �. (2.12)

By (2.8), we have, for eachη ∈ B0, thatT̂(η)− T(η) ∈ V ⊗ ∧2V ∗, and by(2.10)ϕ(η) ∈
g0 ⊗ V ∗ ↪→ (V ⊗ V ∗)⊗ V ∗. Of courseϕ(η) ∧ �(η) must be inV ⊗ ∧2V ∗, and we can
prove that, for eachη ∈ B0, we have

T̂(η)− T(η) = ϕ(η) ∧ �(η) = δ(ϕ(η)), (2.13)

whereδ is thetorsion mapδ : g0 ⊗ V ∗ → V ⊗∧2V ∗, obtained by the composition

δ : g0 ⊗ V ∗ ↪→ (V ⊗ V ∗)⊗ V ∗ → V ⊗∧2V ∗, (2.14)

where the last map skew-symmetrizes the final twoV ∗ factors. In fact, in terms of the
isomorphismsg0 ⊗ V ∗ ∼= Hom(V , g0) andV ⊗ ∧2V ∗ ∼= Hom(∧2V, V ), the torsion map
δ can be written in the useful form

δ(ψ)(v ∧ w) = ψ(v)w − ψ(w)v, v,w ∈ V, ψ ∈ Hom(V , g0) (2.15)

from where(2.13)is clear.
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So we see that, under a changeω �→ ω̂ = ω + ϕ, the torsion changes according to
T �→ T̂ = T − δ(ϕ), which suggests studying the kernel and cokernel of the torsion
mapδ

kerδ
def=g(1)0 , cokerδ

def=H 0,2(g0), (2.16)

g
(1)
0 is called thefirst prolongationof g0, andH 0,2(g0) the intrinsic torsion spaceof g0.

Because the mapδ isG0-equivariant, it follows that these two vector spaces have natural
inducedG0 actionsρ(1) : G0 → GL(g(1)0 ) andρ0,2 : G0 → GL(H 0,2(g0)).

For an elementt ∈ V ⊗∧2V ∗, denote by [t ] ∈ H 0,2(g0), its projection into the intrinsic
torsion space. Then the computation above shows that [T̂] = [T], as maps fromB0 to
H 0,2(g0). In other words, the map [T] : B0 → H 0,2(g0) is independent of the choice of the
connectionω, and so defines anintrinsic torsion functionof theG0-structureB0, which is
equivariant

[T](η · g) = ρ0,2(g−1)([T](η)) ∀η ∈ Bo ∀g ∈ G0.

One of the main steps in Cartan’s equivalence method is to choose the connectionω,
using the freedomω �→ ω + ϕ, so that the torsion simplifies as much as possible (this is
usually called “torsion absorption”). In our case we have

ω =
[

ωij ωiβ

0 ω
β
γ

]
∈ Ω1(B0; g0)

that coincides with the left-invariant Maurer–Cartan form on each fiberπ−1(q) ∼= G0,
q ∈ Q, and Cartan structureequation (2.7)takes the form

[
d�i

d�α

]
=−

[
ωij ωiβ

0 ωαβ

]
∧

[
�j

�β

]

+
[

Tijk�
j ∧ �k + Tikβ�

k ∧ �β + Tiβγ�β ∧ �γ

Tαjk�
j ∧ �k + Tαkβ�

k ∧ �β + Tαβγ�β ∧ �γ

]
, (2.17)

whereωij = −ω
j
i . But we are free to add arbitrary semi-basic partsϕiβ andϕαβ , respectively,

to ωiβ andωαβ . If we expand these semi-basic partsϕiβ = ϕiβk�
k + ϕiβγ�γ andωαβ =

ωαβj�
j +ωαβγ�γ , and substitute in the structureequation (2.17), we see that we can choose

theseϕ’s so that theTikβ,T
i
βγ ,T

α
kβ andTαβγ all vanish. Now add a semi-basic partϕij , with

ϕij + ϕ
j
i = 0, toωij . We expandϕij = ϕijk�

k + ϕijγ�γ , and we can assume already that

ϕijγ = 0. Now note that we can also assume thatϕijk = −ϕikj, since any three tensorϕijk
skew in two indices and symmetric in the other two (i.e.,ϕijk = ϕikj = −ϕ

j

ik), must be zero

(this is called theS3 lemma). So, if we chooseϕijk = (1/2)(Tijk − Tjik) we vanish (absorve)

theTijk torsion terms.



J.N. Tavares / Journal of Geometry and Physics 45 (2003) 1–23 7

Therefore by an appropriate choice of connection we can reduce the torsion terms in
(2.17)to the form[

0

Tαjk�
j ∧ �k

]
,

and with this choice of connection the corresponding structure equation is (omitting the·̂):[
d�i

d�α

]
= −

[
ωij ωiβ

0 ωαβ

]
∧

[
�j

�β

]
+

[
0

Tαjk�
j ∧ �k

]
, (2.18)

or (compare with Eq. (5) in[5])

d�i = −ωij ∧ �j − ωiβ ∧ �β, d�α = −ωαβ ∧ �β + Tαjk�
j ∧ �k. (2.19)

The second equation in(2.19)can be written in the form

d�α = Tαjk�
j ∧ �k mod{�α}, (2.20)

which reveals thatTαjk are the components of thestructure tensorof the distributionD. More
precisely, if we choose a 0-adapted (local) coframe

θ = [θa ] =
[
θi

θα

]

to the distributionD, with dual frame{Xi;Xα}, then pulling back(2.41)via θ , we obtain

dθα = T αjk θ
j ∧ θk mod{θα}, (2.21)

whereT αjk (q) = Tαjk(θ(q)), and so

2T αjk = dθα(Xj ,Xk) = T αjk θ
j ∧ θk(Xj ,Xk) = −θα([Xj ,Xk]). (2.22)

Incidentally, the previous computations shows that the intrinsic torsion spaceH 0,2(g0)
isV/S⊗∧2S∗ ∼= Hom(S∧S, V/S), where we recall thatS is the subspace ofV generated
by the firstd vectors{εi}i=1,...,d of the basis{εa} for V

H 0,2(g0) = V ⊗∧2V ∗

Im δ
= V

S
⊗∧2S∗ ∼= Hom

(
S ∧ S, V

S

)
. (2.23)

Now choose an adapted 0-coframe

θ = [θa ] =
[
θi

θα

]
,

and consider the Riemannian space with Riemannian metric

ds2 =
∑
i

(θ i)2 +
∑
α

(θα)2.
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Consider also the connection 1-form given, in the gaugeθ , by theg0-valued 1-formω =
θ∗ω, with structure equations the pull-back to the base of(2.19)

dθ = −ω ∧ θ + T . (2.24)

(Recall the reproducing propertyθ∗� = θ . We have also putT = θ∗T.) LetXa denote the
frame dual toθa . If we consider a trajectoryγ : I → Q, the corresponding velocity is the
vector fieldV , alongγ

V (t) = va(t)Xa(γ (t)), where va(t) = θa(γ̇ ),

and its (ω-covariant) acceleration is given by

DV

dt
= dva

dt
Xa + va(t)

DXa
dt

(γ (t)) = dva

dt
Xa + va(t)∇γ̇ Xa

= dvb

dt
Xb + va(t)ωba(γ̇ )Xb =

(
dvb

dt
+ va(t)ωba(γ̇ )

)
Xb. (2.25)

In particular, if we assume thatγ is horizontal, i.e.,γ̇ ∈ Dγ (t) ∀t , then splitting again the
indicesa = (i;α), we have thatvα = θα(γ̇ ) = 0, and so, sinceωαj (γ̇ ) = 0

DV

dt
=

(
dvi

dt
+ vj (t)ωij (γ̇ )

)
Xi =

(
dθi(γ̇ )

dt
+ ωij (γ̇ )θ

j (γ̇ )

)
Xi(γ (t)). (2.26)

But what happens if we change the gauge? To see this, let us differentiate the equation
R∗
g� = g−1�, for afixedg ∈ G0, with

� =
[

�i

�α

]
and g−1 =

[
C B

0 A

]−1

=
[
C−1 −C−1BA−1

0 A−1

]
.

We then have

R∗
g

[
�i

�α

]
=

[
C−1 −C−1BA−1

0 A−1

] [
�i

�α

]
=

[
C−1�i − C−1BA−1�α

A−1�α

]
,

and so, using the structureequations (2.19)

d�̂
i = d(R∗

g�
i ) = d(C−1�i − C−1BA−1�α) = C−1 d�i − C−1BA−1 d�α

= (C−1)ij (−ω
j
k ∧ �k − ω

j
β ∧ �β)− (C−1BA−1)iα(−ωαγ ∧ �γ + Tαjk�

j ∧ �k)

� −(C−1)ijω
j
k ∧ �k − (C−1BA−1)iαTαlk�

l ∧ �k � −(C−1)ijω
j
k ∧ �k

−(C−1)ijB
j
β(A

−1)βαTαlk�
l ∧ �k � −(C−1)ij (ω

j
k − B

j
β(A

−1)βαTαlk�
l ) ∧ �k

� −(C−1)ij (ω
j
k − B

j
β(A

−1)βαTαlk�
l ) ∧ Ckm�̂

m � −(C−1)ij

× (ωjkCkm − B
j
β(A

−1)βαTαlkC
k
m�l ) ∧ �̂

m � −(C−1)ij

× (ωjkCkm − B
j
β(A

−1)βαTαlkC
k
mC

l
p�̂

p
) ∧ �̂

m � −(C−1)ij

× (ωjkCkm − B
j
β(A

−1)βαTαlkC
k
mC

l
p�̂

p
) ∧ �̂

m

� −((C−1)ijω
j
kC

k
m) ∧ �̂

m − (C−1)ijB
j
β T̂βpm�̂

p ∧ �̂
m
, (2.27)
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where� means= mod{�α}, and we have also used(2.34). But, on the other side

d�̂
i = −ω̂

i
m ∧ �̂

m
mod{�α}, (2.28)

andω̂
i
m = (C−1)ijω

j
kC

k
m mod{�α}, and so, comparing(2.27)with (2.28), we deduce that

in order to preserve covariance of the covariant acceleration(2.26), for horizontal curves,
we must have

(C−1)ijB
j
β T̂βmp = 0,

or equivalently (compare with Eq. (6) in[5])

B
j
β T̂βmp = 0. (2.29)

But this restricts the set of admissible coframes. In fact, if, for exampleT(η) ∈ Hom(S ∧
S, V/S) is surjective∀η ∈ B0, which means thatD is a 2-step bracket generating distribu-
tion, then(2.29)implies thatBjβ = 0, and so we must reduce the gauge group to:2

G1 =
{[

C 0
0 A

]
: C ∈ SO(d), A ∈ GL(n− d)

}
⊂ G0.

Hereafter we assume thatD is a 2-step generating distribution. We then consider the cor-
respondingG1-structureπ : B1 = BG1 → Q, and we choose ag1-connection formω, on
B1, with structure equations[

d�i

d�α

]
=

[
ωij 0

0 ωαβ

]
∧

[
�j

�β

]

+
[

Tijk�
j ∧ �k + Tijβ�

j ∧ �β + Tiβγ�β ∧ �γ

Tαjk�
j ∧ �k + Tαjβ�

j ∧ �β + Tαβγ�β ∧ �γ

]
. (2.30)

Arguing as before, we add an arbitrary semi-basic formϕαβ = ϕαβj�
j + ϕαβγ�γ to ωαβ ,

and using this freedom, we observe theTαjβ andTαβγ torsion terms. Analogously, adding

an arbitrary semi-basic formϕij = ϕijk�
k to ωij , with ϕij + ϕ

j
i = 0, we observe theTijk

torsion terms. With this choice of connection form, the structureequation (2.30)reduces to[
d�i

d�α

]
=

[
ωij 0

0 ωαβ

]
∧

[
�j

�β

]
+

[
Tijα�

j ∧ �α + Tiαβ�
α ∧ �β

Tαjk�
j ∧ �k

]
, (2.31)

or (compare with Eq. (8) in[5])

d�i = ωij ∧ �j + Tikα�
k ∧ �α + Tiαβ�

α ∧ �β,

d�α = ωαβ ∧ �β + Tαjk�
j ∧ �k. (2.32)

2 This is the case treated in[5].
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Finally, we can add an arbitrary semi-basic formϕij = ϕijα�
α to ωij , with ϕij + ϕ

j
i = 0,

and arrange things so that

Tikα = Tkiα, (2.33)

and in this way theωij -part of the connectionω is uniquely defined.
Now look at theTαjk part of the torsionT = T[ω], defined by the second equation

in (2.32). Denote this torsion part simply bỹT, and recall that we may seẽT as a map
η ∈ B0 �→ T̃(η) ∈ Hom(S ∧ S, V/S) ∼= ∧2S∗ ⊗ V/S. To see explicitly howG0 acts on
this torsion part̃T, let us take a fixedg ∈ G0. Then, with

g−1 =
[
C−1 −C−1BA−1

0 A−1

]
,

the equation̂�=defR∗
g� = g−1� implies that�̂

i = (C−1)ik�
k mod{�β}, �̂α = (A−1)αβ

�β , and so�α changes to(A−1)αβ�
β , when we apply the gauge transformationg. On the

other side,�j∧�k changes to(C−1)
j
l (C

−1)km�l∧�m mod{�β}. So, in one hand we have

d�̂
α = T̂αlm�̂

l ∧ �̂
m

mod{�̂α} = mod{�α},
and on the other hand,

d�̂
α = (A−1)αβ d�β = (A−1)αβTβik�

i ∧ �k mod{�α}
= (A−1)αβTβikC

i
l C

k
m�̂

l ∧ �̂
m

mod{�α},
which means that the torsion part, that we are considering, changes according to

Tαlm(η · g) = (A−1)αβTβik(η)C
i
l C

k
m, η ∈ B0, g =

[
C B

0 A

]
. (2.34)

In particular, we see thatG1 acts exactly in the same way, since theB ’s have no appearance
in (2.34).

WhenD is a 2-step generating distribution, we can “normalize” the torsion partT̃ in the
following way. In this case, we know thatT̃(η) : S ∧ S → V/S is surjective∀η ∈ B1, and
thus, for eachα = d + 1, . . . , n, we can choose a bicovectorBα = Tαij (η)ε

i ∧ εj ∈ ∧2S∗,

such that̃T(η)(Bα) form a basis forV/S. But in∧2S∗ we have a metric, sinceS is Euclidean,
and we can choose the linearly independentBα orthonormal, with respect to that metric,
acting if necessary with an appropriateC-part ofg (recall thatC ∈ SO(d)). This imposes
the conditions (compare with Eq. (11) in[5])∑

ij

Tαij T
β
ij = δαβ. (2.35)

Whichg’s preserve this̃T-torsion normalization? Of course those for whichA ∈ SO(n−d).
So we must reduce the group to

G2 =
{
g =

[
C 0
0 A

]
, C ∈ SO(d), A ∈ SO(n− d)

}
, (2.36)

and this newB2-structure defines an intrinsic metric for the normal bundleTM/D.
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We proceed as before, choosing a connection forB2 and doing torsion absorption. The
structure equation has now the form[

d�i

d�α

]
=

[
ωij 0

0 ωαβ

]
∧

[
�j

�β

]

+
[

Tijk�
j ∧ �k + Tijβ�

j ∧ �β + Tiβγ�β ∧ �γ

Tαjk�
j ∧ �k + Tαjβ�

j ∧ �β + Tαβγ�β ∧ �γ

]
(2.37)

with ωij + ω
j
i = 0 andωαβ + ω

β
α = 0. Arguing as before (theS3 lemma), we observe the

Tijk and theTαβγ torsion terms. Then we can add an arbitrary semi-basic formϕij = ϕijα�
α

to ωij with ϕij + ϕ
j
i = 0, and arrange things so that

Tikα = Tkiα, (2.38)

and in this way theωij -part of the connectionω is uniquely defined. Analogously, we can

add an arbitrary semi-basic formϕαβ = ϕαβi�
i to ωαβ with ϕαβ +ϕ

β
α = 0, and arrange things

so that

Tαjβ = Tβjα, (2.39)

and in this way theωαβ -part of the connectionω is also uniquely defined. With this choice
of connection form, the structureequation (2.37)finally reduces to[

d�i

d�α

]
=

[
ωij 0

0 ωαβ

]
∧

[
�j

�β

]
+

[
Tijα�

j ∧ �α + Tiαβ�
α ∧ �β

Tαjk�
j ∧ �k + Tαjβ�

j ∧ �β

]
, (2.40)

or (compare with Eq. (8′) in [5])

d�i = ωij ∧ �j + Tijα�
j ∧ �α + Tiαβ�

α ∧ �β,

d�α = ωαβ ∧ �β + Tαjk�
j ∧ �k + Tαjβ�

j ∧ �β (2.41)

with the following symmetries:

ωij = −ω
j
i , ωαβ = −ωβα, Tikα = Tkiα,

Tαjβ = Tβjα,
∑

ij

Tαij T
β
ij = δαβ. (2.42)

This finish Cartan’s intrinsic geometrization of 2-step non-holonomic systems. InSection
4, we examine a detailed example.

3. Cartan’s affine generalized spaces: development

Denote byAn the spaceRn with its canonical affine structure, and its canonical affine
frame,{0;Ea}. As usual we identify a pointP ∈ An with its position vectorP =  0P . An
affine isomorphismA : An → An is a mapping of the form

A : P �→ a + A(P), P ∈ An, (3.1)
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whereA ∈ GL(n,R) anda = A(0) ∈ An (only depends onA). They form a group GA(n),
which is the semi-direct product ofRn by GL(n), and for which we use the following
homogeneous representationGA(n) ↪→ GL(n+ 1,R):

A
def= (a,A) ∼=

[
1 0
a A

]
with A ∈ GL(n,R), a ∈ R

n, (3.2)

which corresponds to identifyingAn with the affine hyperplaneRn×{1} ⊂ R
n×R, through

P �→
[

1
P

]
.

The Lie algebraga(n) can be identified with the Lie subalgebra ofgl(n+ 1,R) consisting
of matrices of the form[

0 0
ξ Λ

]
def=ξ ⊕Λ with ξ ∈ R

n, Λ ∈ gl(n). (3.3)

The Lie bracketga(n) is given by

[ξ ⊕Λ, η ⊕ Ψ ] = (Λη − Ψ ξ)⊕ [Λ,Ψ ], (3.4)

and the adjoint representation GA(n) onga(n), by

Ad(a,A)(ξ ⊕Λ) = (−AΛA−1a + Aξ)⊕ (AΛA−1). (3.5)

So

ga(n) = R
n ⊕ gl(n), (3.6)

and this direct sum is reductive

AdGA(n)R
n ⊆ R

n. (3.7)

In fact,

Ad(a,A)(ξ ⊕ 0) = Aξ ⊕ 0 ∀(a,A) ∈ GA(n) ∀ξ ∈ R
n. (3.8)

LetQ be ann-dimensional smooth manifold, and for each pointq ∈ Q letAqQ be the
affine tangent space, i.e., the tangent spaceTqQwith its canonical affine structure. Points in
AqQ will be denoted by0q,Pq,Qq, . . . , and vectors onTqQ by Xq,Yq, . . . (but we omit
the subscriptq when there is no danger of confusion). An affine frame forAqQ consists
on a pointP ∈ AqQ together with a linear frame{Xa}a=1,...,n for TqQ. We denote such a
frame by{P;Xa}.

LetA(Q) be the affine frame bundle overQ (see[11, Section III.3]or [15]), which is a
principal fiber bundle with group GA(n), acting on the right ofA(Q) by

{P;Xa} · (a = (aa),A = (Aa
b)) = {P + aaXa;XaAa

b}.
If {P;Xa} and {Q;Ya} are two frames forAqQ, then there is a uniqueg = (a,A) =
(aa,Aa

b) ∈ GA(n) such that{P;Xa} · (aa,Aa
b) = {Q;Ya}. In fact, we determinea andA

by the equationsQ = P+ aaXa andYb = XaAa
b , i.e.,(a,A)measure the relative position

of the second frame relative to the first one.
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Hereafter we identify a pointq ∈ Q with the point0q ∈ AqQ (the origin ofTqQ).
Consider a linear moving frame{0q;Xa(q)}, defined on an open setU ⊆ Q. For example,
if (U ; qa) is a local coordinate neighborhood forQ, then, for eachq ∈ U , {0q; ∂/∂qa} is
an affine frame forAqQ. Each other frame{P;Ya} forAqQ determine unique(ya, Y ab ) ∈
GA(n) such thatP = yaXa andYb = XaY

a
b . Thus, we see that(qa, ya, Y ab ) is a trivializing

local coordinate system forπ−1(U) ∼= U × GA(n) ⊂ A(Q).
Now let us consider ageneralized affine connectiononQ, i.e., a connection onA(Q).

Let ω̃ the corresponding connection 1-form, which is aga(n) = R
n⊕ gl(n)-valued 1-form

onA(Q)

ω̃ = ϕa ⊕ ωab. (3.9)

By the general theory (see[11] or [15]), we know that onπ−1(U) = U × GA(n), ω̃ has
the following expression:

ω̃ = ϕ ⊕ ω = ϕa ⊕ ωab = Ad(y,Y)−1(ϕ ⊕ ω)+ (y,Y)−1 d(y,Y)

= (−Y−1y,Y−1)(ϕ ⊕ ω)(y,Y)+ (−Y−1y,Y−1)(dy,dY)

= (Y−1(ϕ + ωy + dy))⊕ (Y−1ωY + Y−1 dY)

= (Y−1)ab(dy
b + ϕb + ωbcy

c)(Y−1)ac (dY
c
b + ωceY

e
b ) (3.10)

(wherey = ya,Y = Yab , ϕ = ϕa, ω = ωab ) for a uniquega(n) = R
n ⊕ gl(n)-valued local

“gauge potential”ω = ϕa ⊕ ωab defined onU . If we put

ϕa = Γ a
b θ

b, ωab = Γ a
bcθ

c, (3.11)

where(0q;Xa(q)) is a linear (affine) moving frame defined on an open setU ⊆ Q, θa(q)
the corresponding linear dual coframe, andΓ a

b , Γ
a
bc ∈ C∞(U), then from(3.10)

ϕa = (Y−1)ab(dy
b + ϕb + ωbcy

c) = (Y−1)ab(dy
b + Γ b

c θ
c + Γ b

ceθ
eyc), (3.12)

ωab = (Y−1)ac (dY
c
b + ωceY

e
b ) = (Y−1)ac (dY

c
b + Γ c

efθ
f Y eb ). (3.13)

WhenΓ a
b = δab , so thatϕa = θa , then (the pull-back to the linear frame bundle of)ϕa

is equal to�a=def(Y−1)abθ
b which is the canonical (tautological or soldering) form on the

linear frame bundle ofQ. In this case, we call̃ω an affine connection onQ (see[11, p. 129]
or [15]). Moreover, we see that (the pull-back to the linear frame bundle of)ωab defines a
linear connection onQ. Hereafter we only consider affine connections.

Consider now a curveτ = qt , 0 ≤ t ≤ 1, contained on an open subsetU ⊆ Q, where
is defined a linear moving frame{0q;Xa(q)}q∈U . Then we can define the horizontal lift
τ̃ of τ , with respect to the affine connectionω̃, as the curvẽτ onA(Q) (i.e., a curve of
affine frames) such thatπ(τ̃t ) = qt andω̃( ˙̃τ t ) = 0. In local coordinates, ifqt = qa(t), then
τ̃t = (qa(t), ya(t), Y ab (t)), and

˙̃τ t = θa(q̇t )Xa(qt )+ ẏa
∂

∂ya
+ Ẏ ab

∂

∂Y ab
,
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and therefore, by(3.12) and (3.13), the condition of horizontallity,̃ω( ˙̃τ t ) = 0, translates
into the following system of ODEs:

dyb

dt
+ dθb

dt
+ ωbcy

c = 0,
dYab
dt

+ ωaeY
e
b = 0, (3.14)

or more explicitly

dyb

dt
+ dθb

dt
+ Γ b

cey
c dθe

dt
= 0,

dYab
dt

+ Γ a
efY

e
b

dθf

dt
= 0, (3.15)

where dθb/dt means of course dθb(q̇t )/dt .
Take a linear (affine) frame{0q0;Ya} for Aq0Q. Then the horizontal liftτ̃t , obtained

solving the above ODEs(3.15), with initial conditionsya(0) = 0 andYab (0) = Yab , where
Yb = Yab Xa , defines an affine isomorphism, called theaffine parallel transportalongτ ,
that we denote by the same symbol

τ̃t : Aq0Q→ AqtQ, {0q0;Ya} �→ {Pt ;Yb(t)} (3.16)

that maps the frame{0q0;Ya} into the frame{Pt ;Yb(t)}, where

Pt = ya(t)Xa(qt ), Yb(t) = Yab (t)Xa(qt ), (3.17)

and as above,ya(t), Y ab (t) is the solution to the above ODEs(3.15), with initial conditions
ya(0) = 0 andYab (0) = Yab .

Now, from the second equation in(3.17), we see that

Pt = ya(t)Xa(qt ) = ya(t)(Y−1)ba(t)Yb(t), (3.18)

and so the point0qt ∈ AqtQ is the point−ya(t)(Y−1)ba(t)Yb(t), with respect to the affine
frame (Pt ;Ya(t)). Therefore,τ̃−1

t maps this position vector onto−ya(t)(Y−1)ba(t)Yb,
which, ast varies, describes a curve inAq0Q, which we denote by

P(t) = −ya(t)(Y−1)ba(t)Yb, (3.19)

and is called thedevelopmentof the curveτ = qt in Aq0Q. If we differentiate this, taking
into account the second equation in(3.14), from which we deduce that d(Y−1)ba/dt =
(Y−1)beω

e
a , we compute that

dP

dt
=−

(
dya

dt
(Y−1)ba(t)+ ya(t)

d(Y−1)ba

dt

)
Yb

=−
((

−dθa

dt
− ωae y

e

)
(Y−1)ba(t)+ ya(t)(Y−1)be(t)ω

e
a

)
Yb

= dθa

dt
(Y−1)ba(t)Yb. (3.20)

In particular, if in(3.20)we takeYb = Xb(q0) = Xb as our initial frame and put

ea(t)
def= (Y−1)ba(t)Xb
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with (Y−1)ba(0) = δba , then{ea(t)} is the image inAq0Q of the linear frame{Xa(qt )} by
(the linear part of)̃τ−1

t : AqtQ→ Aq0Q, i.e.,

ea(t) = τ̃−1
t (Xa(qt )),

and{ea(t)} is a moving frame inAq0Q. Using the second equation in(3.14), from which
we deduce that d(Y−1)ba/dt = (Y−1)beω

e
a , we compute that

dea
dt

= (Y−1)be(t)ω
e
aXb = Γ c

ae
dθe

dt
ec(t). (3.21)

Thus the solution(P (t);ea(t)) of the system of ODEs

dP

dt
= dθa(q̇t )

dt
ea(t),

dea
dt

= ωca(qt )ec(t) = Γ c
ae(qt )

dθe(q̇t )

dt
ec(t) (3.22)

gives a moving frame inAq0Q, andP(t) describes a curve starting at the originq0, which
is the development ofτ = qt in Aq0Q.3

The curveτ = qt is called ageodesic(or auto-parallel curve) of the affine connectionω̃

if the development ofτ in Aq0Q is a straight line. So we must haveP(t) = at + b, where
a,b are constant vectors inTq0Q. DifferentiatingP(t) twice we obtain, using(3.22)

d2θa

dt2
+ Γ a

bc
dθb

dt

dθc

dt
= 0, (3.23)

which are the equations of a geodesic.
Assume now that the linear connectionω is ag0-connection

ωab =
[

ωij ωiβ
0 ω

γ
δ

]
.

Choose a linear frame{0q;Xa(q)}, so that{Xa} = {Xi;Xα} andXi is a local basis for the
distributionD. Thenei (0) = Xi (q0) is a basis forD0 = Dq0

∼= R
d . Let us compute the

development inAq0Q of a curveτ = qt (not necessarily horizontal). We have

dei
dt

= Γ c
ie

dθe

dt
ec(t) = Γ c

ij
dθj

dt
ec(t)+ Γ c

iα

dθα

dt
ec(t) = Γ k

ij
dθj

dt
ek(t)+ Γ k

iα

dθα

dt
ek(t)

=
(
Γ k

ij (qt )
dθj (q̇t )

dt
+ Γ k

iα(qt )
dθα(q̇t )

dt

)
ek(t), (3.24)

becauseΓ β
j = 0, which means that the moving frame{ei (t)} always evolves withinD0.

After solving the ODEs(3.24) for the {ei (t)}, with initial conditionei (0) = Xi (q0), we
substitute in

dP

dt
= dθi(q̇t )

dt
ei (t), (3.25)

3 Cartan usually writes system(3.22)in the simplified form (see, for example, Eq. (10) in[5–7] and also[9])

dP = θaea, dea = ωcaec.
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and we obtain now an ODE for the developmentP(t) of τ = qt in D0 ∼= R
d . In particular,

for a horizontal curve, i.e.,θα(q̇t ) = 0, its development is the curve inDo obtained solving
the above ODEs. InSection 4we will see an explicit computation of the development of a
curve.

For an affine connectioñω = θa⊕ωab , we can define the corresponding curvature 2-form
in the usual way

�̃ = dω̃ + ω̃ ∧ ω̃.

Then its pull-back to the linear frame bundle is given by[
0 0

�a �a
b

]
= d

[
0 0

θa ωab

]
+

[
0 0

θa ωab

]
∧

[
0 0

θa ωab

]

=
[

0 0

dθa + ωab ∧ θb dωab + ωac ∧ ωcb

]
(3.26)

from which we read the structural equations

�a = dθa + ωab ∧ θb, �a
b = dωab + ωac ∧ ωcb. (3.27)

The first one

dθa = −ωab ∧ θb + �a, (3.28)

defines the torsion�a of the affine connection—anRn-valued semi-basic 2-form on the
linear frame bundleL(Q) overQ, that can be written in the form

�a = �a
bcθ

b ∧ θc. (3.29)

The meaning of this torsion is well known (see, for example[6,9])—take an ordered pair
(u, v) of tangent vectorsu, v ∈ TqQ, and extend them to vector fieldsU,V ∈ X(O),
defined in an open setO ⊂ Q, containingq. We may also assume that [U,V ] = 0 inO.
Consider now a “small” loopΛ(U,V )ε , based onq, defined by

Λ(U,V )ε = ΦV
−εΦ

U
−εΦ

V
ε Φ

U
ε (q), (3.30)

whereΦU (resp.,ΦV ) is the local flow ofU (resp.,V ). Then we develop the loopΛ(U,V )ε

in TqQ, to obtain a curveP ε(t), 0 ≤ t ≤ 1 that starts inq ∼= 0q . But, in general, this curve
P ε(t) does not close, i.e.,P ε(0) �= P ε(1). In fact, we can prove that, to second order in
ε, the failure ofP ε(t) to close is measured by a vector inTqQ ∼= R

n, depending only on
u ∧ v ∈ ∧2TqQ (and not on the vector fieldsU,V ), which is exactly the torsion of the
connection atq evaluated inu ∧ v: Ωa(u ∧ v).

If we look again intoEq. (2.41)

d�i = ωij ∧ �j + Tijα�
j ∧ �α + Tiαβ�

α ∧ �β,

d�α = ωαβ ∧ �β + Tαjk�
j ∧ �k + Tαjβ�

j ∧ �β

that gives the Cartan’s intrinsic geometrization of 2-step non-holonomic systems, we see
that we have two Euclidean connectionsωij andωαβ , that conduces to two developments,
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respectively, inD0 andD⊥
0 (we choose a complementary subspaceD⊥

0 toD0 so thatD⊥
0

∼=
V/S). The first development has torsion along “infinitesimal loops”u ∧ v ∈ ∧2Tq0Q,
with u ∈ D0, v ∈ D⊥

0 or u, v ∈ D⊥
0 , and the torsion vanishes ifu, v ∈ D0. The second

development has torsion along infinitesimal loopsu ∧ v ∈ ∧2Tq0Q, with u ∈ D0, v ∈ D⊥
0

oru, v ∈ D0 (in this last case the torsion relates to the integrability tensor of the distribution
D), and the torsion vanishes ifu, v ∈ D⊥

0 . Moreover, we have the symmetries given by
(2.42).

4. Example: the constrained particle

Here we apply the above methods to the so-calledconstrained particleinQ = R
3
xyz (see

[4, p. 2035; 16, p. 256]or [3, p. 53]), with kinetic energy

g = 2T = ẋ2 + ẏ2 + ż2

and constraint

θ3 = dz− y/dx

As we have already remarked inSection 1, in these papers, the connection found is neither
metric nor unique. On the contrary, and this one the main differences of the approach we
develop here, the connection found below is intrinsically associated to the non-holonomic
system, and moreover it is a metric connection, though in general with torsion. The difference
is therefore very explicit (compare with Example 2 in[2], and Example 6.2 in[4]). In
both these works the connection is not metric. Another subject that is treated here and
not elsewhere (to our knowledge), is related to the development ofQ = R

3 into (affine)
R

2 ∼= D0 ⊂ A0R
3, along any curve starting at0, associated to the intrinsic affine Euclidean

connection that is determined below.
We have thatD = kerθ3 = span{Y1, Y2}, whereY1 = ∂y andY2 = ∂x + y∂z. Note

that {Y1, Y2} is a T -orthogonal basis forD. Moreover,Y12 = [Y1, Y2] = ∂z, and so the
non-holonomy degree is 2. We callD a 2-step distribution with grow vector(2,3).

We start with the following 0-adapted orthonormal basis:

X1 = ∂y, X2 = ∂x + y∂z√
1+ y2

, X3 = −y∂x + ∂z√
1+ y2

, (4.1)

so thatD = span{X1, X2} with corresponding dual basis

θ1 = dy, θ2 = dx + y dz√
1+ y2

, θ3 = dz− y dx√
1+ y2

, (4.2)

so thatD = kerθ3. By construction,(θ1)2+(θ2)2|D = g|D, and so this is in fact a 0-adapted
coframe toD. We consider now theG1-structureB1 ∼= R

3 ×G1, overQ = R
3, trivialized

with respect to our choice of the initial 0-adapted coframe(4.2), whereG1 is the group

G1 =




 cosϕ − sinϕ 0

sinϕ cosϕ 0
0 0 a


 , ϕ ∈ R, a ∈ R − {0}


 .
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The corresponding tautological form onB1 is

� =




�1

�2

�3


 =




cosϕ sinϕ 0

− sinϕ cosϕ 0

0 0
1

a






θ1

θ2

θ3


 .

So

�1 = cosϕ θ1 + sinϕ θ2, �2 = − sinϕ θ1 + cosϕ θ2, �3 = 1

a
θ3, (4.3)

whereθa are given by(4.2), and we compute that

θ1 ∧ θ2 = �1 ∧ �2, θ1 ∧ θ3 = a cosϕ�1 ∧ �3 − a sinϕ�2 ∧ �3,

θ2 ∧ θ3 = a sinϕ�1 ∧ �3 + a cosϕ�2 ∧ �3. (4.4)

We also need the following computations:

dθ1 = 0, dθ2 = 1

1+ y2
θ1 ∧ θ3, dθ3 = − 1

1+ y2
θ1 ∧ θ2. (4.5)

Therefore the first derived systemI(1) is generated byθ1 ∧ θ2. So, from(4.3)–(4.5), we
deduce that

d�1 = dϕ ∧ �2 + sinϕ

1+ y2
(a cosϕ�1 ∧ �3 − a sinϕ�2 ∧ �3),

�2 =−dϕ ∧ �1 + cosϕ

1+ y2
(a cosϕ�1 ∧ �3 − a sinϕ�2 ∧ �3),

d�3 =−da

a
∧ �3 − 1

a

1

1+ y2
�1 ∧ �2, (4.6)

and thus the structure equation is




d�1

d�2

d�3


 =




0 dϕ 0

−dϕ 0 0

0 0 −da

a


 ∧




�1

�2

�3




+




a
sinϕ cosϕ

1+ y2
�1 ∧ �3 − a

sin2ϕ

1+ y2
�2 ∧ �3

a
cos2ϕ

1+ y2
�1 ∧ �3 − a

cosϕ sinϕ

1+ y2
�2 ∧ �3

−1

a

1

1+ y2
�1 ∧ �2



. (4.7)

Now take a look at theT3
12-torsion term, defined by the last equation d�3 = T3

12�
1 ∧

�2 mod{�3}

T3
12(x, y, z, a, ϕ) = −1

a

1

1+ y2
.



J.N. Tavares / Journal of Geometry and Physics 45 (2003) 1–23 19

Of course we can choose a section of ourB1 ∼= R
3 ×G1 bundle, trivialized with respect to

our choice of the initial 0-adapted coframe(4.2), say

σ : (x, y, z) �→ (x, y, z, a(x, y, z), ϕ(x, y, z)),

so thatT3
12 becomes constant and equal to 1 (this is calledtorsion normalizationor group

parameter normalization). In fact, take, for example

σ : (x, y, z) �→
(
x, y, z, a(x, y, z) = − 1

1+ y2
, ϕ(x, y, z) = 0

)
.

Then, for the corresponding moving coframe, obtained from the initial 0-adapted coframe
(4.2), acting on the right withg



θ̂1

θ̂2

θ̂3


 =




1 0 0

0 1 0

0 0 −(1+ y2)







θ1 = dy

θ2 = dx + y dz√
1+ y2

θ3 = dz− y dx√
1+ y2




=




θ1

θ2

−(1+ y2)θ3


 , (4.8)

we will have T3
12(σ (x, y, z, a, ϕ)) ≡ 1. Now we ask—for which coframes the torsion

remains constant and equal to 1? To answer this, let us see howT3
12 changes under the

G1-action? We know thatR∗
g� = g−1�, so with

g−1 =




cosϕ sinϕ 0

− sinϕ cosϕ 0

0 0
1

a




with a �= 0, this implies that

R∗
g�

3 = 1

a
�3.

We take the exterior derivative of both sides mod{�3}:
1

a
d�3 = 1

a
T3

12�
1 ∧ �2 = R∗

g d�3 = (R∗
gT3

12)R
∗
g(�

1 ∧ �2)

= (R∗
gT3

12)�
1 ∧ �2 mod{�3},

and so theT3
12 changes according to

R∗
gT3

12 = 1

a
T3

12.

So we must havea = 1, and we reduce ourG1 group to theG2 group

G2 =




 cosϕ − sinϕ 0

sinϕ cosϕ 0
0 0 1


 , ϕ ∈ R


 ⊂ G1,
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and take aG2 bundleB2 ∼= R
3×G2, trivialized with respect to our choice of the 1-adapted

coframe given by(4.8)(this is calledgroup reduction). We then choose a connection for this
B2 bundle, and compute the corresponding structure equation (we have omitted the “hats”
over the�’s)


d�1

d�2

d�3


 =




0 dϕ 0

−dϕ 0 0

0 0 0


 ∧




�1

�2

�3




+




− sinϕ cosϕ

(1+ y2)2
�1 ∧ �3 + sin2ϕ

(1+ y2)2
�2 ∧ �3

− cos2ϕ

(1+ y2)2
�1 ∧ �3 + cosϕ sinϕ

(1+ y2)2
�2 ∧ �3

�1 ∧ �2 + 2y

1+ y2
�1 ∧ �3



. (4.9)

Now changing

dϕ �→ dϕ + C1�
1 + C2�

2 + C3�
3,

we get




d�1

d�2

d�3


 =




0 dϕ 0

−dϕ 0 0

0 0 0







�1

�2

�3


 +



C1�

1 ∧ �2 + C3�
3 ∧ �2

−C2�
2 ∧ �1 − C3�

3 ∧ �1

0




+




− sinϕ cosϕ

(1+ y2)2
�1 ∧ �3 + sin2ϕ

(1+ y2)2
�2 ∧ �3

− cos2ϕ

(1+ y2)2
�1 ∧ �3 + cosϕ sinϕ

(1+ y2)2
�2 ∧ �3

�1 ∧ �2 + 2y

1+ y2
�1 ∧ �3



, (4.10)

and choosingC1 = 0 = C2 andC3 = 1/2(1+ y2)2, we get the structure equation


d�1

d�2

d�3


 =




0 ω 0

−ω 0 0

0 0 0







�1

�2

�3


 +




A�1 ∧ �3 + B�2 ∧ �3

B�1 ∧ �3 − A�2 ∧ �3

�1 ∧ �2 + 2y

1+ y2
�1 ∧ �3


 , (4.11)

where

ω = dϕ + 1

2(1+ y2)2
�3, A = − sinϕ cosϕ

(1+ y2)2
, B = 1− 2 cos2ϕ

2(1+ y2)2
. (4.12)

The development inD0, with respect to theω-connection, has symmetric (according to
(2.42)) torsion along infinitesimal loopsu ∧ v ∈ ∧2Tq0Q, with u ∈ D0, v ∈ D⊥

0 , and the
torsion vanishes ifu, v ∈ D0.
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If we choose a gauge corresponding toϕ ≡ 0, i.e., our 1-adapted coframe given by(4.8),
then the base structural equations become

dθ1 = ω ∧ θ2 + Bθ2 ∧ θ3, dθ2 = −ω ∧ θ1 + Bθ1 ∧ θ3,

dθ3 = θ1 ∧ θ2 + 2y

1+ y2
θ1 ∧ θ3, (4.13)

where

ω = 1

2(1+ y2)2
θ3, B = − 1

2(1+ y2)2
, (4.14)

and

θ1 = dy, θ2 = dx + y dz√
1+ y2

, θ3 = −
√

1+ y2(dz− y dx). (4.15)

Take a parameterized curve inR
3, γ (t) = (x(t), y(t), z(t)), so thatγ̇ = ẋ∂x+ ẏ∂y+ ż∂z =

θa(γ̇ )Xa(γ (t)), where theθ ’s are given by(4.15), and theX’s are the corresponding dual
basis. We develop this curve intoR2

xy
∼= D0, with respect to the basis{e1 = X1(0) =

∂y,e2 = X2(0) = ∂x} for D0. The equations for this development are (see(3.22) and
(3.24))

dP

dt
= dθi(γ̇ (t))

dt
ei (t),

dei
dt

=
(
Γ k

ij (γ (t))
dθj (γ̇ (t))

dt
+ Γ k

iα(γ (t))
dθα(γ̇ (t))

dt

)
ek(t). (4.16)

With ω = ω1
2 = −ω2

1 = [1/2(1 + y2)2]θ3, we have that the only non-trivialΓ ’s are
Γ 1

23 = −Γ 2
13 = 1/2(1+ y2)2, and so

de1

dt
= Γ 2

13(γ (t))
dθ3(γ̇ (t))

dt
e2(t) = 1

2(1+ y(t)2)2

dθ3(γ̇ (t))

dt
e2(t),

de2

dt
= Γ 1

23(γ (t))
dθ3(γ̇ (t))

dt
e1(t) = − 1

2(1+ y(t)2)2

dθ3(γ̇ (t))

dt
e1(t), (4.17)

which are the differential equations for the moving frame{e1(t),e2(t)}, evolving withinD0,
starting fort = 0 with {e1 = ∂y,e2 = ∂x}. After integrating these equations we substitute
theei (t) in the first equation of(4.16), to obtain the differential equation for the development
of γ in D0

dP

dt
= dθi(γ̇ (t))

dt
ei (t). (4.18)

In particular, ifγ is a horizontal curve, which implies thatθ3(γ̇ ) ≡ 0, we obtain de1/dt = 0
and de2/dt = 0, i.e.,e1(t) ≡ ∂y ande2(t) ≡ ∂x , and so

dP

dt
= dθ1(γ̇ (t))

dt
∂y + dθ2(γ̇ (t))

dt
∂x. (4.19)
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As a concrete example, takeγ (t) = (t2/2,0,−t2/2). Thenθ3(γ̇ ) = t and


de1

dt
= 1

2
e2(t)

de2

dt
= −1

2
e1(t)

⇒




e1(t) =
(

cos
1

2
t

)
e1 +

(
sin

1

2
t

)
e2,

e2(t) = −
(

sin
1

2
t

)
e1 +

(
cos

1

2
t

)
e2,

(4.20)

wheree1 = ∂y ande2 = ∂x . Thus, sinceθ1(γ̇ ) = 0 andθ2(γ̇ ) = t , we have

dP

dt
= −

(
sin

1

2
t

)
e1+

(
cos

1

2
t

)
e2 ⇒ P(t) = 2

(
sin

1

2
t,−1+ cos

1

2
t

)
, (4.21)

sinceP(t) must verify the initial conditionP(0) = (0,0).
Now, withX1, X2 given by(4.1), we have

γ̇ = θ1(γ̇ )X1(γ (t))+ θ2(γ̇ )X2(γ (t))
def=v1X1 + v2X2 = v1∂y + v2∂x + y∂z√

1+ y2

= v2√
1+ y2

∂x + v1∂y + yv2√
1+ y2

∂z = ẋ∂x + ẏ∂y + ż∂z

⇒




ẋ = v2√
1+ y2

ẏ = v1

ż = yv2√
1+ y2

⇒
{
v1 = ẏ,

v2 =
√

1+ y2ẋ,
(4.22)

and the equations for a geodesicγ are

d

dt

[
v1

v2

]
=

[
0 ω

−ω 0

] [
v1

v2

]
with ω = 1

2(1+ y2)2
θ3.

So they are (compare with[2])


dv1

dt
= ÿ = 0

dv2

dt
= yẏ√

1+ y2
ẋ +

√
1+ y2ẍ = 0

⇒



ÿ = 0,

ẍ + y

1+ y2
ẋẏ = 0.

(4.23)
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