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Abstract

Following the ideas of Elie Cartan (1928), we use Cartan’s equivalence method and the notion
of Cartan'’s affine generalized space and development to geometrize non-holonomic mechanics.
© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

The purpose of this paper is to give, using modern differential geometrical tools, a detailed
version of the ideas of Elie Cartan, exposed in his address at the 1928 International Congress
of Mathematicians (s€f®]), about geometrization of non-holonomic systems.

This important paper seems forgotten in the mathematical literature devoted to non-holo-
nomic systems. To our knowledge, the only exception is due to Jair Koiller and his col-
laborators, in a recent preprint that has appeared during the preparation of this work (see
[12]), in which they also make a tentative to bring at daylight Cartan’s paper. However,
their methods are very different from those we develop here. In fact, they use extensively
the traditional Koszul approach to connection theory, based on covariant derivatives, as is
explained, for example if18], and they put emphasis in other issues that are not considered
here. In this paper, we have tried instead to follow closely the two key ideas of Cartan’s
approach to geometric structures, namely his equivalence method, or in modern terms the
geometry ofG-structures (sef8,10,19), which hopefully seems the strongest way to treat
the geometric structure behind non-holonomic systems, and his noti@mefalized spage
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here space with affine connection (§6€7], and for a modern approach, the recent book
[17]). These two key ideas were developed by Cartan along several years, in a lot of papers,
where he has applied them extensively, for example, to relativity theory@gesnd to his
program of geometrization of differential equations (see the third volume dD&is/res
Complétek

Given a non-holonomic mechanical systerwith configuration spac@, ann-dimensio-
nal smooth Riemannian manifold, with Riemannian megri¢the kinetic energy), and
non-holonomic constraints given by a completely non-integrable distrib@iohdimen-
siond, the main idea is to associate#q an intrinsically defined Euclidean (or metric)
connection, in general with torsion, and to use it to develop the sPaedong any of its
curves, into a fixed affine spa@®,, for some fixed poind € Q.

The tentative of associating to a non-holonomic mechanical system a connection, goes
back to Synge, Vancreanu, and more recently, citing just a few, to Vershik and coworkers
[20,21] Bates and SniatyckR] and Bloch and Croucfd]. However, in these papers, the
connections found are in general neither metric nor unique. In fact, often the choice of
connection is based on somewhat ad hoc assumptions which obscures the true geometric
realm of the structure of non-holonomic systems. On the contrary, and this one the main
differences of the approach we develop, the connection founded here is intrinsically as-
sociated to the non-holonomic system, at least for 2-step distributions, and moreover, it
is a metric connection, though in general with torsion. This difference is very explicit in
the example treated iBection 4 the constrained particle, which must be compared with
[2, Example 2; 4, Example 6.2[n both these works the connection is not metric.

Another subject that we explore is the following—to the non-holonomic systéimthe
2-step situation), we associate a Cartan (affine) connection to the affine frame bug@dle of
(in Cartan’s terminologijp, 7], a “generalized space”—this is part of Cartan’s generalization
of Klein’s Erlangen program, as is explained in the recent Ha@K), which is then used
to developQ, along any of its curves, into a fixed affine spdeg for some fixed point
o € Q. This strongly resembles the analogous situation for holonomic systems, when
we roll (eventually with skidding or spinning) &dimensional submanifold on another
d-dimensional submanifold (d-plane, for example) iR"” (see the beautiful paper of
Nomizu[14]). However, in general, we have now torsion, whose geometrical meaning is
made clear, in our context, iBection 3and more concretely in the example $&ction
4—take a “small” loop, based ane Q, and develop it irD, to obtain a curve that starts in
o. In general, this curve does not close, and, to second order, the failure to close is measured
by a vector which is exactly the torsion of the connection @teeSection Jor a rigorous
approach).

This paper is organized as follows. 8ection 2 we use Cartan’s equivalence method
to geometrize non-holonomic mechanics, by associating to such a system an Euclidean
connection. For a 2-step generating distributiyrwe are able to associate intrinsically two
Euclidean connections, in general with torsion, recovering the results of Caiftzln e
also include, for pedagogical reasons and also to make the paper as much self-contained
as possible, a short exposition about Cartan’s equivalence method, following closely Ref.
[19] and the very influential recent bo§k3], since this method seems poorly used in the
non-holonomic contexSection 3 gives a detailed version of the notion of Cartan’s affine
generalized space and also of the notion of development. This is then used to d@yelop
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along any of its curves, into a fixed affine spdeg for some fixed poinb € Q. Finally,
in Section 4 we illustrate the previous theory by working out the detailed computations in
the example of a constrained particleRA.

2. Cartan geometrization of non-holonomic mechanics

Consider a non-holonomic mechanical systemith configuration spac@, ann-dimen-
sional smooth Riemannian manifold, with Riemannian megrigthe kinetic energy), a
smooth 1-formF e £21(Q) (the force field), and non-holonomic constraihtgiven by
a smooth ranki completely non-integrable vector subbundleT@), i.e., a completely
non-integrable distributio® of dimensiord in Q.

We also assume th@ is bracket generating which, by Chow theorem (g63), guar-
antees that the set of all possible positions of our mechanical systierall of Q.

The d’Alembert—Lagrange principle (s§¢¥]) says that the dynamics af obeys the
following condition:

[L] - F € D, 2.1)

where [L] is the Lagrange derivative of the Lagrangiar= (1/2)g (se€[1, p. 12) andD+
is the annihilator oD in 7*Q.

Hereafter, we use the following indices conventionsi, k,l = 1,...,d = dimD;
a,B,y,A=d+1,...,n=dimQanda,b,c=1,...,n.

We denote by the vector spac®” of column vectors, with a fixed basfe,}, and by
V* its dual of row vectors, with the dual bagis'}, and we also consider the subsp&asf
V, generated by the firgtvectors{e; };—1 .. 4 Of the basige,}. By a O-adapted coframé,
for Dy, g € O, we mean an isomorphiséy : 7,0 — V, which satisfieg, (D,) = S and
9;(~, s = gqIp,, Where(., -)|s is the usual Euclidean inner product®a= R?. Moreover,
we denote byGo the subgroup of GLV) consisting on the linear isomorphismsfthat
fix S, and which, when restricted ) are orthogonal transformations fIn terms of the
basis{e,} = {€;; €4} for V, Gy is the subgroup of Glz) given by the following block
triangular matrices:

C B
e 1] 22

whereA and B are arbitrary real matrices (of functions), respectively- d) x (n — d),
d x (n —d), C is an orthogonad x d matrix, and de€ detA # 0.

Consider a (local) 0-adapted coframéor D. Putd = 0'e; + 6%¢, and look at as a
column vector of 1-forms o®:

9=wﬂ=[$}.

Thus (locally)9® annihilatesD andg|p = (61)2+- - - + (69)?|p. Of course such a coframe
is not unique—the indeterminacy is measured by the gauge gfgupormally, we have

1 We consider only the time independent case, for simplicity.



4 J.N. Tavares/Journal of Geometry and Physics 45 (2003) 1-23

a Go-structurerr : Bo = Bg, — Q, whereGy is the subgroup of Glz) given by the
above mentioned block triangular matrices. The gréigpacts on the right o3y by the
rule Rg(9) = 0 - g = g~10, whered = [6%], andg € Go C GL(n).

If we fix a O-adapted coframe = [6¢], defined on an open sét < Q (i.e., a local
section ofBp overU), then we have a trivialization of th&p-bundle overU, given by

9. U xGo— Bolu, (q.8) ~ g %, (2.3)

that is equivariant in the sense thatg, gh) = (gh) =20, = h=1g710, = h 1t(q, 9) =
79(q, 8) - h.

We now consider the soldering for@ (or tautologicalV -valued 1-form), defined on
Bo, through the formula

0,(V) =nom(V), VveT,Bo, nebo. (2.4)

Note thatinthe LHS of2.4), n is considered as a point 8§, while in the RHS is considered
as anisomorphism : T ;) Q — V, defined byy(v) = [n°(v)], v € Tx(; Q. The soldering
form has the following properties (s€80,13,19):

e Equivariance R}© = g 1@©.

e Semi-basiciy® = 0, for every vertical vector fiel& (tangent to the fibers).

e Reproducing propertyif o : U — By is a local section, thea*® = o, where on the
RHSo is viewed as & -valued form onlJ.

Using the local trivialization(2.3), it is easy to see that;©).¢) = g_10q. Let us
denoter; © simply by ®. Then we have

Géqg) ¢ B - GJ C B
Oy = = , whereg = o 4 € Gog. (2.5)

et(xq,g) 0 A 95

Following the equivalence method of Cartan (EE&13,19), we now choose a connection
form, that is, an equivariani-valued 1-formw on By, wheregg = Lie(Gp) that verifies
the following two properties:

e w(Xg) = £VE € go, WhereX; is the infinitesimal generator of th&o-right action on
Bo.

° R;‘w = g_l

wg Vg € Go.

If we putg = exp(r§), § € go in the equivariance propert§, ® = ¢~ 1O, and differen-
tiate forr = 0, we obtainL‘XE(B = —£ - ©, and sinced (X¢) = 0 we get

dO(Xg, V) = (1x, dO)(V) = (Lx, 0 — dix, ) (V) = —§ - O(V) = —(@(Xg) - O(V)
—oW)  OX)E — (0 A ©)(Xe. V), (2.6)

which shows that ® + @ A © is a V-valued semi-basic 2-form oBp, and thus can be
written as

dO@+wA® =T, 2.7)
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whereT is aV-valued semi-basic 2-form dffy. This is the so-calle€artan first structure

equation T = T[w] is thetorsionof the connectiom, and can be expanddd= T¢0¢ A

0®/ ® ¢,. However, if we put, for each e Bo, kero, = #, we know thaty + 7, is
ann-dimensional distribution transversal to the fibers and ®al,, : H, — V is an
isomorphism. Using this isomorphism we can consilas a function

T:Bo— V@AV ZHom(A?V, V), T=Tke,®€ ne’, (2.8)
that satisfies the equivariance
T 9w Aw) =g T)(@Agw), v,weV, nebo, geGo. (2.9)

Now we study how the torsion varies with the choice of the connection. So, let us assume
that we choose another connection fanThen® = w+ ¢, for somegp-valued semi-basic
1-form of adjoint type, i.eR;q; = g lpgandixe = 0VX vertical. Therefore, we can write
0 = 9,04, for go-valued functionsp,. Using again the above mentioned isomorphism
©,lx, : Hy — V,and interms of a basig, } for go and{e“} for V*, we can writep as a
function

@ 1 Bo— go® V* = Hom(V, go), ¢ =0,6 @€ (2.10)

for certain functionsp/, on By. Therefore we see that the spageR V* parameterizes the
ambiguity in the choice of the connection 1-form. We also haveghatG-equivariant

Lo -g. veV, nebBo geGo. (2.11)

By Cartan first structurequation (2.7)we now have

om-gW) =g~

d®=—wA®+T=—&)A®+T’,
whereT is the torsion of», and so
T-T=(@-w0)AO@=9pAr0O. (2.12)

By (2.8), we have, for each € B, thatT(n) — T(n) € V ® A2V*, and by(2.10)¢ (1) €
go® V* — (V® V*) ® V*. Of coursep(n) A ©(n) must be inV ® A2V*, and we can
prove that, for each € By, we have

T —T) = o) A O() = (), (2.13)
wheres is thetorsion maps : go ® V* — V ® A2V*, obtained by the composition
§:g0Q V¥ > (VR V) QV* > Ve A2V*, (2.14)

where the last map skew-symmetrizes the final 8#fofactors. In fact, in terms of the
isomorphismgio ® V* = Hom(V, go) andV ® A2V* = Hom(A?V, V), the torsion map
8 can be written in the useful form

S(P)wAw)=yw —Y(w)v, v,weV, ¥ eHom(V, go) (2.15)

from where(2.13)is clear.
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So we see that, under a change—~ @ = w + ¢, the torsion changes according to
T+ T =T — 8(p), which suggests studying the kernel and cokernel of the torsion
maps

ker8d=efgél), cokers 2 H02(gy), (2.16)

ggl) is called thefirst prolongationof go, and H%?(go) theintrinsic torsion spacef go.

Because the mapis Go-equivariant, it follows that these two vector spaces have natural
inducedGg actionsp? : Gg — GL(ggl)) andp®2: Gg — GL(H%2(gp)).

For an element € V ® A2V*, denote byq] € H%2(go), its projection into the intrinsic
torsion space. Then the computation above shows ﬁiat:[ [T], as maps fromB3g to
H%2(go). In other words, the maf] : Bo — H%2(go) is independent of the choice of the
connectiornw, and so defines antrinsic torsion functiorof the Go-structureBp, which is
equivariant

[T10r- 8) = p%2(¢"H(TIm)) Vn € B, Vg € Go.

One of the main steps in Cartan’s equivalence method is to choose the connrgction
using the freedomw — ® + ¢, so that the torsion simplifies as much as possible (this is
usually called “torsion absorption”). In our case we have

(z)i~ wi
= |: Oj ﬁ} € 2%(Bo; g0)

@y

that coincides with the left-invariant Maurer—Cartan form on each fiber(g) = Go,
g € Q, and Cartan structurequation (2.7}jakes the form

de’ o o oY
__ J B A
de” 0 of eF
i k i @k B i B 1%
[Tjke) ANO +T,0°NO" + Ty, ©° 1O } 2.17)

i ok k ’ :
TO/ A O +T{,0 A OF + T 7 A O
wherew’, = —/ . Butwe are free to add arbitrary semi-basic peftande?, respectively,
to o), andwj. If we expand these semi-basic paps = ¢}, 0" + ¢} O andwf =
‘*’%j e/ +w%y @Y, and substitute in the structueguation (2.17)we see that we can choose
thesep's so that theT ;, T); . T¢; and T, all vanish. Now add a semi-basic palit, with
o + 9/ =0,t0 ', We expandp’; = (pj?ke)k +¢%,0”, and we can assume already that
¢’ = 0. Now note that we can also assume ﬂnﬁt: —q)f(j, since any three tensepfk
skew in two indices and symmetric in the other two (iqajik, = (pfq- = —(pi{(), must be zero
(this is called theS3 lemma). So, if we choo&pj?'k = (1/2)(TJ?k — Tifk) we vanish (absorve)
theTj’k torsion terms.
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Therefore by an appropriate choice of connection we can reduce the torsion terms in
(2.17)to the form

0
T40/ A OF |
and with this choice of connection the corresponding structure equation is (omittifjg the
de’ o ) e/ 0
= - A + . e (2.18)
de“ 0 wj oF Tﬁ‘(@f ANO

or (compare with Eq. (5) ifb])

40’ = -0 AN O®/ —ws AOF, dO =—wf A0 +T{@/ A0 (219
The second equation {{2.19)can be written in the form

de* = T®’ A ©" mod(e“}, (2.20)

which reveals thalf; are the components of tiséructure tensoof the distributiorD. More
precisely, if we choose a 0-adapted (local) coframe

9=Wﬂ=[$}

to the distributiorD, with dual frame{X;; X}, then pulling back2.41)via 6, we obtain
do” = 7,267 A 6" mod{6°}, (2.21)
WhereTjﬁ‘ (@) = Tﬁ((e(q)), and so
2T = do% (X, Xx) = Tg6/ A 0" (X, Xp) = —0%([X, Xi]). (2.22)

Incidentally, the previous computations shows that the intrinsic torsion s@p&éeégo)
isV/S®A%S* = Hom(S A S, V/S), where we recall that is the subspace 6f generated
by the firstd vectors{e;};—1. ... 4 Of the baside,} for V

.....

Ve AVE vV 1%
H%2(g) = —— " " — ~ @ A2S*=Hom(SAS — ). 2.23
(g0) Im s 5@ ( S) (2.23)

Now choose an adapted 0-coframe

0=101=[ g |

and consider the Riemannian space with Riemannian metric

ds? = (0% + ) (")~
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Consider also the connection 1-form given, in the gatigey thegp-valued 1-formw =
6*w, with structure equations the pull-back to the basgdf9)

dd = —-wn6+T. (2.24)

(Recall the reproducing propey ® = 6. We have also puf = 6*T.) Let X, denote the
frame dual t@“. If we consider a trajectory : I — Q, the corresponding velocity is the
vector fieldV, alongy

V(t) = v (1) Xa(y (1)), wherev’(t) = 0%(y),
and its -covariant) acceleration is given by
DV dv? d @

? d X +v? (I)V Xa
dv b a b d a b, -
=?Xb+v Ow, (y)Xp = E'i‘v Ow,(y) | Xp. (2.25)

In particular, if we assume thatis horizontal, i.e.y € D, () V¢, then splitting again the
indicesa = (i; @), we have that* = 6%(y) = 0, and so, sinceﬁ‘(;‘x) =
d i

bv_ (& W
= g i ()0 ‘
d ( a VO] (”)> ( q e (V)> Xi(y@).  (2.26)

But what happens if we change the gauge? To see this, let us differentiate the equation
R;©® = ¢g~1@, for afixedg € Go, with

; -1 -1 —1pa-1
e 1 _[C B B C —C7*BA
o=[&] we =[G 4] -] U

We then have

| @] _|Ct —cBAt | @ | _[cte - ciBATte"
sle*| | o ATt o | A~le” ’

and so, using the structueguations (2.19)

dé' =d(R;@) = d(Cc 10’ — c'BA ") = ¢ 1dO' — c~'BA 1 dE”
= (C Y~ A O — ) A OF) — (CTIBA D (02 A O7 + T4O/ A OF)
~ —(CHiwl A0 — (CTIBAYTRO' A O >~ —(CHiw] A OF
—(CHBHATHETRO A OF ~ —(C7Y)] -(a)k Bj(ATHiTO') A OF
~ —(C Y] - By HETEO) A CkO" ~ —(c7Y),
x (0 Ck — BLA™HETRChO) A 0" ~ —(c7Y),
x (a)ka BJ(ATHETRCECLO ) A 0" ~ —(c7Y)!,
x (0] Ck — BJ(A™HETRCECLO") A 6"
~—((C™ )'jwkc,’;)A@ —(CY.B)TE,0" A 6", (2.27)
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where>~ means= mod{@®“}, and we have also us€d.34) But, on the other side
N NP oAm
dO® = -, A© mod{O“}, (2.28)
and®!, = (C‘l)i.w,{C’,; mod{@®%}, and so, comparin(R.27)with (2.28) we deduce that
in order to preserve covariance of the covariant acceler§#@6) for horizontal curves,
we must have
-Ni pifB _
(1B Thp=0.
or equivalently (compare with Eq. (6) [B])
ByTho=0. (2.29)

But this restricts the set of admissible coframes. In fact, if, for exafiple € Hom(S A
S, V/S) is surjectivevn € Bo, which means thab is a 2-step bracket generating distribu-
tion, then(2.29)implies thatBé = 0, and so we must reduce the gauge group to:

G1={|:€ gi| 1 C € SQW), AeGL(n—d)} C Go.

Hereafter we assume th&tis a 2-step generating distribution. We then consider the cor-
respondingGi-structurer : By = Bg, — Q, and we choose g¢-connection form, on
B1, with structure equations

de! ®. 0 o/
= J A
de” 0 wf o’

Ti®/ AGF + T 0/ AOF + T, @F A O
ik JB By (2 30)
J k J B B ’ '
Tﬁi@’/\@ +T‘}‘ﬁ®’/\® —i—T%y@ N(C1
Arguing as before, we add an arbitrary semi-basic f q)gj@f + <p°‘y®” to ®%,

and using this freedom, we observe fﬁ% andT%y torsion terms. Analogously, adding

an arbitrary semi-basic form’, = goj?k@k to “’l/ with goj. + ¢/ = 0, we observe tha i,
torsion terms. With this choice of connection form, the structupeation (2.30)educes to

de’ L0 e/ T, 0/ A%+ T 0% A OF
o A +] N . (@3
de“ 0 o} e’ LN
or (compare with Eqg. (8) ifb])

40’ =0’ A ®/ + T, 0" A O* +T,,0" A O,
d0* = wj A O + T{O/ A O, (2.32)

2 This is the case treated j5].
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Finally, we can add an arbitrary semi-basic fo:p(p: @', O to w', with ¢'. + ¢! =0,
. Jjo J J !
and arrange things so that
te = T (2.33)
and in this way thew’ -part of the connectiow is uniquely defined.
Now look at theTJ?,‘( part of the torsionT = T[w], defined by the second equation

in (2.32) Denote this torsion part simply by, and recall that we may séeas a map
n € Bor T(n) € HoOMS A S, V/S) = A2S* ® V/S. To see explicitly howGg acts on
this torsion parf, let us take a fixeg € Go. Then, with
1 _[ct —c At

£ =1 o a
the equatio®="R*@ = ¢~1@ implies thatd' = (c~1Hi®* mod{®f},0" = (Ahy
©7, and s0®” changes tdA~1)%©”, when we apply the gauge transformatioron the
other side®’ A®* changes teC 1)/ (C~1)k ©' A@” mod{©F}. So, in one hand we have

d6” = ¢ &' A 6" mod(6”) = mod{©°},
and on the other hand,
d6" = (A™H¢ de’f = (A~H4THe' A ©F mod(e”)
= (A heThCick®' A @" mod(e®),
which means that the torsion part, that we are considering, changes according to

e ; C B
Timm-8) = (A 1),9Tf3k(n)C1C§1, nebo, g= [0 A] (2.34)

In particular, we see that; acts exactly in the same way, since #s have no appearance
in (2.34)

WhenD is a 2-step generating distribution, we can “normalize” the torsioniparthe
following way. In this case, we know thai() : S A S — V/S§ is surjectivevn € By, and
thus, for eacle = d + 1, ..., n, we can choose a bicovectdf = Tﬁ‘(n)ei A€l e N2S*,

such thaf ()(B%) form a basis fol/ /S. Butin A2S* we have a metric, sincgis Euclidean,
and we can choose the linearly independghtorthonormal, with respect to that metric,
acting if necessary with an appropriatepart of g (recall thatC € SO(d)). This imposes
the conditions (compare with Eq. (11)[5])

D oTiT =8 (2.35)
i

Whichg’s preserve thi§ -torsion normalization? Of course those for whitke SO(n—d).
So we must reduce the group to

G2={g=[g 2]CeSO(d),AeSO(n—d)}, (2.36)

and this news,-structure defines an intrinsic metric for the normal buficiéy D.
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We proceed as before, choosing a connectior3foand doing torsion absorption. The
structure equation has now the form

do’]_|«; 0] @
de* | | 0 o} o’
[Tfk(af ANOF +Ti 0/ AOF + T, ©F A O }

. . 2.37
T4 ©/ /\G)"+T‘}‘ﬂ®/ A OF +T‘§y®’3/\®y (2:37)

with w’] + ‘*’z] =0 andw% + wﬁ = 0. Arguing as before (th83 lemma), we observe the
Tfk and theT¢, torsion terms. Then we can add an arbitrary semi-basic igm ¢’ ©“
to w; with <p§. + (p{ = 0, and arrange things so that

te = T (2.38)

and in this way theo;.—part of the connectiom is uniquely defined. Analogously, we can

add an arbitrary semi-basic fora% = ‘Pféi@i to wj with 9%+ ¢£ = 0, and arrange things

so that
T8 = T (2.39)

and in this way theo%-part of the connectiom is also uniquely defined. With this choice
of connection form, the structusgjuation (2.37jinally reduces to

i L0 e/ T. @A@Y+ T 0% A OF
de’ | _ | j A 4| e S T @ L (240)
de 0 w} [o% T/ A0 +T50/ A0
or (compare with Eq. (§in [5])
o S ) p
d®' =’ A O/ +T',0/ A 0" +T,,0% 107,

d0” = 0 A O +T(O/ A O +T% 0/ A OF (2.41)
with the following symmetries:
of=-el  ef=-el T, =T
@ =Th. D TaTh =6 (2.42)
i

This finish Cartan’s intrinsic geometrization of 2-step non-holonomic systen®edtion
4, we examine a detailed example.

3. Cartan’s affine generalized spaces: development

Denote by.A" the spac&k” with its canonical affine structure, and its canonical affine
frame,{0; E,}. As usual we identify a poinP € 4" with its position vectoP = OP. An
affine isomorphism : 4" — A" is a mapping of the form

A:P—a+AMP), PeA (3.1)
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whereA € GL(n, R) anda = A(0) € A" (only depends or). They form a group Gu),
which is the semi-direct product &" by GL(n), and for which we use the following
homogeneous representati®i(n) <— GL(n + 1, R):

def 1 0

A:(a,A);[a A] with A € GL(1,R), aeR", (3.2)

which corresponds to identifying” with the affine hyperplan®” x {1} ¢ R"” xR, through

re 2]

The Lie algebrga(n) can be identified with the Lie subalgebraghfn + 1, R) consisting
of matrices of the form

[? /ﬂ“:efs @A with £ e R", A e gl(n). (3.3)
The Lie bracketa(n) is given by

oA nev¥]=Un-¥Eo[A V], (3.4)
and the adjoint representation GA on ga(n), by

Ad@an (E ® A) = (~AAA la+ Ag) @ (AAATY). (3.5)
So

ga(n) = R" @ gl(n), (3.6)
and this direct sum is reductive

AdgamR" C R". (3.7)
In fact,

Adaa(E @0 =As®0 V(a A) e GA(n) V& e R". (3.8)

Let Q be ann-dimensional smooth manifold, and for each paint Q let A, O be the
affine tangent space, i.e., the tangent sige2 with its canonical affine structure. Points in
A, Q will be denoted byo,, P,, Q,, ..., and vectors off, Q by X,, Y, ... (but we omit
the subscript; when there is no danger of confusion). An affine frameAQrQ consists
on a pointP € A, Q together with a linear framgX,},—1,....» for T, 0. We denote such a
frame by{P; X,}.

Let A(Q) be the affine frame bundle ovér (seg[11, Section Ill.3]or [15]), which is a
principal fiber bundle with group Gé:), acting on the right ofA(Q) by

{P: Xa}- (a= @), A= (Ay) = {P+a'Xs; XaAp}.

If {P; X,} and{Q; Y} are two frames fotd, O, then there is a uniqug = (&, A) =
(@, A?) € GA(n) such that{P; X,} - (&%, A}) = {Q; Y,}. In fact, we determina andA
by the equation® = P+ a*X, andY, = X,A7, i.e.,(a, A) measure the relative position
of the second frame relative to the first one.



J.N. Tavares/Journal of Geometry and Physics 45 (2003) 1-23 13

Hereafter we identify a poing € Q with the point0, € 4, Q (the origin of T, Q).
Consider a linear moving fram@,; X.(¢)}, defined on an open sét € Q. For example,
if (U;q“) is alocal coordinate neighborhood for, then, for eacly € U, {0;; 9/9q“} is
an affine frame ford, Q. Each other framéP; Y, } for A, O determine uniquéy, Y;') €
GA(n) suchthaP = y*X, andY;, = X,Y;'. Thus, we see thag“, y, Y;') is a trivializing
local coordinate system far—1(U) = U x GA(n) C A(Q).

Now let us consider generalized affine connectiam Q, i.e., a connection o (Q).
Let @ the corresponding connection 1-form, which igadn) = R” & gl(n)-valued 1-form
on A(Q)

&= ¢’ @ wj,. (3.9)
By the general theory (sd&1] or [15]), we know that ot ~1(U) = U x GA(n), @ has
the following expression:
o=9®w=0"O0)=Adyy) 10 Do) + . Y)dy.Y)
=YY Y Hp o)y, V) + (=Y ly, Y h(dy. dY)
= Yo +oy+dy) @ (Y oY + Y 1dY)
= (A" + " + oly) (Y THIAY] + wfYy) (3.10)
(wherey = y*, Y =Y}, ¢ = ¢, = w}) for a uniquega(n) = R" @ gl(n)-valued local
“gauge potentialw = ¢ @© wj defined onU. If we put
¢t =TP00, o = s, (3.11)

where(0,; X4(¢)) is a linear (affine) moving frame defined on an openlset Q, 6%(q)
the corresponding linear dual coframe, ail I, € C*°(U), then from(3.10)

9" = (Y Hady’ + ¢ + oly) = (v HYdy? 4 IPo° + rocy©), (3.12)
@8 = (Y H2dYf + 0S¥ = (Y Hedys + 15l vh). (3.13)

WhenTy' = &7, so thatp® = 64, then (the pull-back to the linear frame bundle of)
is equal to@)“:def(Y‘l)Z@b which is the canonical (tautological or soldering) form on the
linear frame bundle of. In this case, we caib an affine connection o@ (se€[11, p. 129]
or [15]). Moreover, we see that (the pull-back to the linear frame bundlebfefines a
linear connection o). Hereafter we only consider affine connections.

Consider now a curve = ¢;, 0 < ¢t < 1, contained on an open subgétc Q, where
is defined a linear moving fram@,; X,(¢)}4cv- Then we can define the horizontal lift
7 of 7, with respect to the affine connectian as the curver on A(Q) (i.e., a curve of
affine frames) such that(z;) = ¢, and@(%,;) = 0. In local coordinates, if; = ¢“(z), then
T = (q“@), y* (1), Y; (1)), and

. 0 .0
T, = 0°(g)X e Yy —a.
Tt (@) Xalgr) +y 2y + 7Y, avy
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and therefore, by3.12) and (3.13)the condition of horizontallity@(z;) = 0, translates
into the following system of ODEs:

dy?  de® . arg

5 g T =0 S tefyi=0, (3.14)
or more explicitly

dy?  de? .do¢ drg . .def

o et rby =0 d—t” + 1Y 5 =0 (3.15)

where @&” /dr means of coursedd (g;)/dr.

Take a linear (affine) framg0,,; Y.} for A, Q. Then the horizontal lift;, obtained
solving the above ODES.15) with initial conditionsy“(0) = 0 andY;/(0) = Y}/, where
Y, = Y X,, defines an affine isomorphism, called tiféine parallel transportlongz,
that we denote by the same symbol

T AgQ— Al Q. {04 Yol = (P Y1) (3.16)
that maps the fram0,,; Y} into the frame{P;; Y, (¢)}, where
Pr = y*"(1)Xa(q1), Yo (1) = Yy ()Xa(gr), (3.17)

and as abovey® (1), Y,/ (t) is the solution to the above ODES.15) with initial conditions
y“(0) = 0 andY;'(0) =
Now, from the second equation (8.17) we see that

P, = v (O)Xa(g) = y* O D00, (1), (3.18)

and so the poind,, € A, Q is the point—y“(t)(Y‘l)Z(t)Yb(t), with respect to the affine
frame (P;; Y, (¢)). Therefore,z, 71 maps this position vector onte y¢ (t)(Y_l)Z(t)Yb,
which, agr varies, describes a curvejquQ, which we denote by

P(1) = —y* )Y H2(0)Ys, (3.19)

and is called thelevelopmentf the curver = ¢; in A4, Q. If we differentiate this, taking
into account the second equation(114), from which we deduce that(@—1)2/dr =
(Y~ Hwe, we compute that

ea'

dp d Y1
— <y ¥ Y20 +y (3 t) )Y

dr
d@a e . ) L e
- (( ar @ >(Y )a®) + Y (DY )e(t)wa> Y
d a

(Y_l) (Y. (3.20)
In particular, if in(3.20)we takeY, = X;(go) = X, as our initial frame and put

e OE 21X,
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with (¥ ~H2(0) = 82, then{e, (1)} is the image in4,, Q of the linear framgX,(g;)} by
(the linear part of ;1 : A, 0 — A, 0, i€,

e (t) = T, 1 (Xa(qn)),

and{e,(s)} is a moving frame in4,, Q. Using the second equation (8.14) from which
we deduce that@ )% /dr = (¥ ~1)bw?, we compute that

de, dGe
% Yt Xy =

e.(1). (3.21)

dr ae ar
Thus the solutioriP(¢); &,(¢)) of the system of ODEs
a0 g =ehaen = g ¥4 ) (3.22)

gives a moving frame itd,, Q, and P (¢) describes a curve starting at the origiy which
is the development of = ¢, in A, Q.3

The curver = ¢, is called ageodesidor auto-parallel curve) of the affine connectidn
if the development of in A,, O is a straight line. So we must havgr) = ar + b, where
a, b are constant vectors ifj,, Q. Differentiating P (¢) twice we obtain, using3.22)

d?g¢ do® do¢
— + [ —— =0, 3.23
dr2 " PCdr dr (3.23)
which are the equations of a geodesic.
Assume now that the linear connectieris ago-connection

wi- wi
=5 g
Choose a linear fram@,; X, (¢)}, so that{X,} = {X;; X} andX; is a local basis for the

distributionD. Thene; (0) = X;(qo) is a basis forDg = D, = R?. Let us compute the
development in4,, Q of a curver = ¢; (not necessarily horizontal). We have

& e 9 i+ e e B o+t e
dt ie dt eC( ) |J d eC( ) ,ad_ec( ) |J d ek( ) w[d_ k( )
dg’ dg~
( (a0 ("’) 4 kg ("’))ek(m, (3.24)

becausd™”? = 0, which means that the moving franpe (¢)} always evolves withirDg.
After solving the ODESY3.24)for the {e;(¢)}, with initial conditione; (0) = X;(go), we
substitute in
dP  do'(g:)
dr — dr

&), (3.25)

3 Cartan usually writes syste(8.22)in the simplified form (see, for example, Eq. (10{#-7] and alsq9])

dP =0%,,  de, = wle..



16 J.N. Tavares/Journal of Geometry and Physics 45 (2003) 1-23

and we obtain now an ODE for the developmeit) of T = ¢, in Do = R?. In particular,
for a horizontal curve, i.e§%(¢;) = 0, its development is the curve 1, obtained solving
the above ODEs. IBection 4we will see an explicit computation of the development of a
curve.

For an affine connectiod = 6“ ® , we can define the corresponding curvature 2-form
in the usual way

Q=dd+ &N e.

Then its pull-back to the linear frame bundle is given by

00—d00+00/\00
Q! Q - 0" o 0’ of 0 of

0 0
= » . (3.26)
do? + wjy A0°  dwj, + 0l A @

from which we read the structural equations

Q' =do’ + i A0°, @ =del + 0! A (3.27)
The first one

do? = —wf A 0" + Q°, (3.28)
defines the torsio®2? of the affine connection—aR"-valued semi-basic 2-form on the
linear frame bundle&€(Q) over Q, that can be written in the form

Q' = Qf 8 A o°. (3.29)
The meaning of this torsion is well known (see, for exanipl@])—take an ordered pair

(u, v) of tangent vectors, v € T,Q, and extend them to vector fields, V e X(0O),
defined in an open s& C Q, containingg. We may also assume thdf[V] = 0 in O.

Consider now a “small” IoomEU’V), based omy, defined by

AU = oV ol d) ol (¢), (3.30)
where®V (resp.,@") is the local flow ofU (resp.,V). Then we develop the Ioopéu’v)
in T, Q, to obtain a curveP¢(¢), 0 < ¢ < 1that starts iy = 0,. But, in general, this curve
P<(¢) does not close, i.eP€(0) # P<(1). In fact, we can prove that, to second order in
€, the failure of P¢(r) to close is measured by a vectoripQ = R”", depending only on
UuAv € /\ZTqQ (and not on the vector fields, V), which is exactly the torsion of the
connection ay evaluated int A v: 2%(u A v).

If we look again intoEq. (2.41)

40’ =\, A @/ + T, 0/ A O* + T\ ,0° 7 O,
d0” = 0 A O +T(O/ A O +T%,0/ A OF

that gives the Cartan’s intrinsic geometrization of 2-step non-holonomic systems, we see
that we have two Euclidean connecti(mfg andw%, that conduces to two developments,
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respectively, iDg andDOl (we choose a complementary subsp@éeto Do so thatDé =
V/8). The first development has torsion along “infinitesimal loopsk v € A2quQ,

with u € Do, v € Dy oru,v € Dy, and the torsion vanishesif v € Do. The second
development has torsion along infinitesimal loaps v € AZTqOQ, withu € Do, v € Dé

oru, v € Dy (in this last case the torsion relates to the integrability tensor of the distribution
D), and the torsion vanishesif v € Dé. Moreover, we have the symmetries given by
(2.42)

4. Example: the constrained particle

Here we apply the above methods to the so-caitatstrained particlen QO = Rﬁyz (see
[4, p. 2035; 16, p. 2560r [3, p. 53), with kinetic energy

g =2T =%+ j% + 22
and constraint
63 = dz — y/dx

As we have already remarked$®ection 1in these papers, the connection found is neither
metric nor unique. On the contrary, and this one the main differences of the approach we
develop here, the connection found below is intrinsically associated to the non-holonomic
system, and moreover itis a metric connection, though in general with torsion. The difference
is therefore very explicit (compare with Example 2[#], and Example 6.2 i4]). In
both these works the connection is not metric. Another subject that is treated here and
not elsewhere (to our knowledge), is related to the developme@t ef R3 into (affine)
R? = Dy c AR, along any curve starting 8t associated to the intrinsic affine Euclidean
connection that is determined below.

We have thaD = kerg3 = sparYy, Y}, whereY; = 9, andY> = 9, + yo,. Note
that {Y1, Y»} is a T-orthogonal basis fo>. Moreover,Y1o = [Y1, Y2] = 9;, and so the
non-holonomy degree is 2. We c@lla 2-step distribution with grow vectagg, 3).

We start with the following 0-adapted orthonormal basis:

Zax+yaz e =_y3x+az

Xl = a ) X2 ’ 3 ’ (41)
) /1 + y2 /1 + y2
so thatD = spar{ X1, X>} with corresponding dual basis
d d dz — yd
olody, 2= XS ST (4.2)

Vity? J1+y2'

sothatD = ker62. By construction(61)2+(62)?|p = g|p, and sothis is in fact a 0-adapted
coframe taD. We consider now th&1-structureB; = R3 x G4, overQ = R3, trivialized
with respect to our choice of the initial 0-adapted coframe@), whereG is the group

cosp —sing 0

G1= sing cosp O |,¢peR aecR-{0}
0 0 a
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The corresponding tautological form & is
ol cosp sing O
0= | 02|= —sing cosp O 02
1
e 0 0o =
a
So
. . 1
0! = cosp 6t + singp6?, ©? = —sing ol + cospb?, ©3= =63 (4.3)
a
wheref“ are given by(4.2), and we compute that
01 A2 =07 0% 01 A0%=acosp O A ©° —asing ©% A ©°,
6% A 6% = asing © A @° + a cosp ©2 A O3, (4.4)
We also need the following computations:
6% A 62 (4.5)

dot =0, do? 6% A 63, do® = —

T 142 14y2

Therefore the first derived systedt is generated by! A 62. So, from(4.3)—(4.5) we
deduce that

sin :
del=dp A ©% + T ¢2(aCOSg0®1/\®3—aSIn§0®2/\ @3,
y
co .
0%=—dp A ® + 1 +S(p2 (acosp O A ®° — asing ©% A ©3),
y
d 1
d@d=—= A0 --_—e're? (4.6)
a al+y
and thus the structure equation is
d@l 0 d(p 0 @1
d@? |=| "% 0 0 |}, g2
d
de® o 0 —— e°
- . 2 -
sing cos sin
Pk At - SN Sl - LY\ &
142 1+y?
2 .
cos oSy sin
tapbetned - F e n e | (4.7)
y y
1 1
—= ol A e?
| al+y? _

Now take a look at thd 3,-torsion term, defined by the last equatio®t = T3,0! A
02 mod{@®3)
1 1

Th(x.y.z.a,9) = —=——.
12(xyza(p) a1+y2
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Of course we can choose a section of Byr= R2 x G bundle, trivialized with respect to
our choice of the initial 0-adapted cofrart®?2), say

o:l(x,y,2) = (x,y,z,a(x,y,2),0x,y,2)),

o) thatTf2 becomes constant and equal to 1 (this is caitegion normalizatioror group
parameter normalization In fact, take, for example

1
— . 9 N ) = 0 .
11,2 P(x,y,2) )
Then, for the corresponding moving coframe, obtained from the initial 0-adapted coframe
(4.2), acting on the right withy

ol (x,y,2) (x, v.z,a(x,y,2) =

61 =dy
1 0 0 go_ r+yde ot
62| =0 1 0 /112 | = 62 . (4.8
00

2\p3
93_dz—ydx —(1+y90

L V1i+y? |
we will havesz(a(x, v,z,a,9)) = 1. Now we ask—for which coframes the torsion

remains constant and equal to 1? To answer this, let us seé’ﬁ»pmhanges under the
Gi-action? We know thak;® = g1, so with

cosp sing O
-1_ | —sing cosp O
1
0 0o -
a
with a # 0, this implies that
1
R:@° = -@°
g a
We take the exterior derivative of both sides ni@f}:
1 1
- de3 = 2Tize)l A©% = R:dO° = (RT3, R (O A ©7)
= (R;T3,)©" A ©% mod{©3},
and so thél'f2 changes according to
1
RyTE, = ;Tiz
So we must have = 1, and we reduce our, group to theG, group

cosp —sing 0
Go = sing cosp O |,peR} C Gy,
0 0 1
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and take & bundleB> = R3 x G, trivialized with respect to our choice of the 1-adapted
coframe given by4.8)(this is calledyroup reductiof. We then choose a connection for this

B> bundle, and compute the corresponding structure equation (we have omitted the “hats”
over the®’s)

de! 0 do O e!
de? |=| —-dp 0 0]|A| @2
de? 0 0 0 e3
. . 2 -
- elAeP+ ——-0°r0
(14 y2)2 (14 y?)?
2 .
cosy 4 3 Cospsing , 3
+| ———=50'r0°+ 5003 |. (4.9)
1+y?? 1+ y?)?
2
91A92+—yZ®1A93
L 1+y _

Now changing
dp > dp + C10' + 207 + 305,

we get
1 2 3 2
Jo! 0 d 0 ol C10-ANBO“+(C30° AN O
de? [=| —dp 0 0| @2 |+ | —C202r0'—(30° A0
de3 0 0 0f]|ed 0
- . 2 —
SIN@ COS Sin
R e A0+ ——— 07 A 03
1+ y9) @A+ y%
5 :
Cos’y 4 3 COSpSiNg .,
+| -———50'"0°+ ———0°A0° |. (4.10)
(1+y2)? 1+ y?)?
2
olre2+ -2 _elred
i 1+ y2 i

and choosing’y = 0 = C» andCs = 1/2(1 + y?)2, we get the structure equation
A A 0%+ BO? A O°

de! 0 o 0][6!
402 |=| -0 0 0| @2 |+| BONO-4027O° |
de3 o o0 0| ed 0l r02 422 0!\
1+ y2
where 2
3 sing cosg 1-2cosg
w=dp+ Pyl A= a2 = a2 (4.12)

The development irDg, with respect to thew-connection, has symmetric (according to
(2.42) torsion along infinitesimal loops A v € A2T,, Q, with u € Do, v € Dy, and the
torsion vanishes ifi, v € Dg.
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If we choose a gauge correspondingte= 0, i.e., our 1-adapted coframe given(gy8),
then the base structural equations become

dot = w A 6% + BO? A 63, do? = —w A 01 + BOL A 63,

2
o3 =61 A 0%+ —L 6T A 63, (4.13)
14y
where
1 1
-~ 9 B=——— 4.14
21+ y2)2° 7 21+ y»)?’ (4-14)
and
dr + yd
—dy, 2= % g3 14 y2(dz — yd). (4.15)
V14 y2

Take a parameterized curveR3, y (1) = (x(¢), y(¢), z(1)), So thaty = %9, +ydy+20; =
0%(y) X, (y (1)), where thed’s are given by(4.15) and theX's are the corresponding dual
basis. We develop this curve inﬂkﬁy = Dy, with respect to the basig; = X1(0) =
dy, & = X2(0) = 9,} for Dy. The equations for this development are ($822) and
(3.24)

dP _ do' (@)

d dr & (@),

de do/ do¥

T ( Gan LD ki (r))@) &), (4.16)
With o = 0} = —0? = [1/2(1 + y?)?]63, we have that the only non-trivials are
= -T2 =1/2(1+ y?? and so

dey d93<y<r)> B 1 do3(y (1))

dey d93<y<t)> 1 do3(y (1))

5 = Islro)— e = R 02 (4.17)

which are the differential equations for the moving frafeg?), ex(¢)}, evolving withinDy,
starting forr = 0 with {e; = 9, & = 9,}. After integrating these equations we substitute
theeg; (¢) in the first equation of4.16) to obtain the differential equation for the development
of y in Dg
dapr d9 y@)
d  dr
In particular, ify is a horizontal curve, which implies thét(y) = 0, we obtain é;/dr = 0
and dep/dr =0, i.e.,e1(t) = 9, andex(¢) = 9,, and so

dp _ o', | dPG),
T

& (1). (4.18)

(4.19)
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As a concrete example, takeér) = (+2/2, 0, —t2/2). Then#3(y) = and

Lz t) = | cos=t¢ + | sin=«¢ ,
4 2e2(t) e St e S5t

= (4.20)
diz = —}el(t) () = sin 1t COSlt

wheree; = 9, ande, = d,. Thus, sincé'(y) = 0 ands?(y) = ¢, we have

dr _ sin 11‘ + COSlt = P(@)=2| sin 11‘ 1+ COSlt (4.22)
ar ' )& ') = 2" ') &
since P () must verify the initial conditionP (0) = (0, 0).
Now, with X1, X2 given by(4.1), we have

. . . def Oy + yo
Y =010 X1y (1) + 07 Xaly 1) Zv X1+ 02Xz = v'dy + UZ%
y
LSNP PR L + 0, + 2
= —— N —e = Z
Vieyz T a2t T T
===
= {y=2 o = V=7 (4.22)
yv? v? =1+ 2,
1+ y?
and the equations for a geodegiare
1 1
dl|v 0 o v 1
- = with @ = ——— 6%
dt|:v2:| |:—a) 0:||:v2:| @ 2(1+ y?)?
So they are (compare wifR])

dvl

WL G

dr Y y=0,

= y (4.23)

dv? yy Pt —Y 5y =0
— = X+4/14+y%%=0 14 y2
dt 1/]__i_yz y

Acknowledgements

| thank Nuno BaBio, Miguel Afonso, Ana Sofia, Maria Leonor, and my mother for
their permanent psychological support for this work. | also thank the referee for useful
suggestions and for calling my attention to R¢fs20,21]



J.N. Tavares/Journal of Geometry and Physics 45 (2003) 1-23 23
References

[1] V.I. Arnold (Ed.), Encyclopaedia of Mathematical Sciences, Dynamical Systems, Vol. lll, Springer, Berlin,
1988.

[2] L. Bates, J. Sniatycki, Nonholonomic reduction, Rep. Math. Phys. 32 (1993) 99-115.

[3] A.M. Bloch, P.S. Krishnaprasad, J.E. Marsden, R. Murray, Nonholonomic mechanical systems with
symmetry, Arch. Rat. Mech. Anal. 136 (1996) 21-99.

[4] A.M. Bloch, P.E. Crouch, Newton’s law and integrability of nonholonomic systems, SIAM J. Contr. Opt.
36 (6) (1998) 2020-2039.

[5] E. Cartan, Représentation géométrique des systemes non-holonomes, Oeuvres Complétes 111 (1928) 253-261.

[6] E. Cartan, Les variétés a connexion affine et la théorie de la relativité généralisée (premiére partie), Oeuvres
Complétes Il (1925) 325-412.

[7] E. Cartan, La méthode du repére mobile, la théorie des groupes continus et les espaces généralisés, Esposés
de Géometrie, Vol. V, Hermann, Paris, 1935.

[8] S.S. Chern, The geometry 6f-structures, Bull. Am. Math. Soc. 72 (1966) 167-219.

[9] J. Favard, Cours de Géométrie Différentielle Locale, Gauthier-Villars, Paris, 1957.

[10] R. Gardner, The Method of Equivalence and its Applications, CBMS-NSF Regional Conference Series, Vol.
58, SIAM, Philadelphia, PA, 1989.

[11] S. Kobayashi, K. Nomizu, Foundations of Differential Geometry, Vol. I, Wiley/Interscience, New York, 1963.

[12] J. Koiller, P.R. Rodrigues, P. Pitanga, Non-holonomic connections following Elie Cartan, Preprint, LNCC,
Brazil, 2001.

[13] R. Montgometry, A Tour of Sub-Riemannian Geometries, their Geodesics and Applications, Mathematical
Surveys and Monographs, Vol. 91, AMS, Providence, RI, 2002.

[14] K. Nomizu, Kinematics and differential geometry of submanifoldshdku Math. J. 30 (1978) 623-637.

[15] T. Okubo, Differential Geometry, Monographs and Textbooks in Pure and Applied Mathematics, Vol. 112,
Marcel Dekker, New York, 1987.

[16] R.M. Rosenberg, Analytical Dynamics of Discrete Systems, Plenum Press, New York, 1977.

[17] R.W. Sharpe, Differential Geometry—Cartan’s Generalization of Klein's Erlangen Programme, GTM, Vol.
166, Springer, Berlin, 1997.

[18] M. Spivak, A Comprehensive Introduction to Differential Geometry, Vol. 2, 2nd Edition, Publish or Perish,
Berkeley, CA, 1979.

[19] S. Sternberg, Lectures on Differential Geometry, AMS/Chelsea, Providence, RI/New York, 1999.

[20] A.M. Vershik, V.Ya. Gershkovich, Nonholonomic dynamical systems, geometry of distributions and
variational problems, in: V.I. Arnold, S.P. Novikov (Eds.), Encyclopaedia of Mathematical Sciences,
Dynamical Systems, Vol. VII, Springer, Berlin, 1994.

[21] A.M. Vershik, Classical and Non-classical Dynamics with Constraints, Lecture Notes in Mathematics, Vol.
1108, Springer, Berlin, 1984, pp. 278-301.



	About Cartan geometrization of non-holonomic mechanics
	Introduction
	Cartan geometrization of non-holonomic mechanics
	Cartan's affine generalized spaces: development
	Example: the constrained particle
	Acknowledgements
	References


